1887

Abstract

diseases are a rare but increasingly recognized trigger of atypical haemolytic uraemic syndrome (HUS) in young children and associated with a higher mortality rate than diarrhoea-associated HUS. This study aimed to determine the importance of neuraminidase A (NanA) and genomic diversity in the pathogenesis of pneumococcal HUS (pHUS). We investigated the gene sequence, gene expression, neuraminidase activity and comparative genomic hybridization of invasive pneumococcal disease (IPD) isolates from patients with pHUS and control strains matched by serotype and sequence type (ST), isolated from patients with IPD but not pHUS. The sequence of 33 isolates was determined and mutations at 142 aa positions were identified. High levels of diversity were observed within the NanA protein, with mosaic blocks, insertions and repeat regions present. When comparing allelic diversity with ST and disease profile in the isolates tested, alleles clustered mostly by ST. No particular allele was associated with pHUS. There was no significant difference in overall neuraminidase activity between pHUS isolates and controls when induced/uninduced with -acetylneuraminic acid. Comparative genomic hybridization showed little difference in genetic content between the pHUS isolates and the controls. Results of gene expression studies identified 12 genes differentially regulated in all pHUS isolates compared with the control. Although neuraminidase enzyme activity may be important in pHUS progression and contribute to pathogenesis, the lack of a distinction between pHUS isolates and controls suggests that host factors, such as acquired abnormalities of the alternative complement cascade in young children, may play a more significant role in the outcome of pHUS.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.063479-0
2013-11-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/11/1735.html?itemId=/content/journal/jmm/10.1099/jmm.0.063479-0&mimeType=html&fmt=ahah

References

  1. Ault B. H. . ( 2000; ). Factor H and the pathogenesis of renal diseases. . Pediatr Nephrol 14:, 1045–1053. [CrossRef] [PubMed]
    [Google Scholar]
  2. Avery O. T. , Macleod C. M. , McCarty M. . ( 1944; ). Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. . J Exp Med 79:, 137–158. [CrossRef] [PubMed]
    [Google Scholar]
  3. Banerjee R. , Hersh A. L. , Newland J. , Beekmann S. E. , Polgreen P. M. , Bender J. , Shaw J. , Copelovitch L. , Kaplan . & other authors ( 2011; ). Streptococcus pneumoniae-associated hemolytic uremic syndrome among children in North America. . Pediatr Infect Dis J 30:, 736–739. [CrossRef] [PubMed]
    [Google Scholar]
  4. Brueggemann A. B. , Griffiths D. T. , Meats E. , Peto T. , Crook D. W. , Spratt B. G. . ( 2003; ). Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype- and clone-specific differences in invasive disease potential. . J Infect Dis 187:, 1424–1432. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cabrera G. R. , Fortenberry J. D. , Warshaw B. L. , Chambliss C. R. , Butler J. C. , Cooperstone B. G. . ( 1998; ). Hemolytic uremic syndrome associated with invasive Streptococcus pneumoniae infection. . Pediatrics 101:, 699–703. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cámara M. , Boulnois G. J. , Andrew P. W. , Mitchell T. J. . ( 1994; ). A neuraminidase from Streptococcus pneumoniae has the features of a surface protein. . Infect Immun 62:, 3688–3695.[PubMed]
    [Google Scholar]
  7. Coats M. T. , Murphy T. , Paton J. C. , Gray B. , Briles D. E. . ( 2011; ). Exposure of Thomsen–Friedenreich antigen in Streptococcus pneumoniae infection is dependent on pneumococcal neuraminidase A. . Microb Pathog 50:, 343–349. [CrossRef] [PubMed]
    [Google Scholar]
  8. Constantinescu A. R. , Bitzan M. , Weiss L. S. , Christen E. , Kaplan B. S. , Cnaan A. , Trachtman H. . ( 2004; ). Non-enteropathic hemolytic uremic syndrome: causes and short-term course. . Am J Kidney Dis 43:, 976–982. [CrossRef] [PubMed]
    [Google Scholar]
  9. Copelovitch L. , Kaplan B. S. . ( 2008; ). Streptococcus pneumoniae-associated hemolytic uremic syndrome. . Pediatr Nephrol 23:, 1951–1956. [CrossRef] [PubMed]
    [Google Scholar]
  10. Copelovitch L. , Kaplan B. S. . ( 2010; ). Streptococcus pneumonia-associated hemolytic uremic syndrome: classification and the emergence of serotype 19A. . Pediatrics 125:, e174–e182. [CrossRef] [PubMed]
    [Google Scholar]
  11. Crookston K. P. , Reiner A. P. , Cooper L. J. , Sacher R. A. , Blajchman M. A. , Heddle N. M. . ( 2000; ). RBC T activation and hemolysis: implications for pediatric transfusion management. . Transfusion 40:, 801–812. [CrossRef] [PubMed]
    [Google Scholar]
  12. Dopazo J. , Mendoza A. , Herrero J. , Caldara F. , Humbert Y. , Friedli L. , Guerrier M. , Grand-Schenk E. , Gandin C. . & other authors ( 2001; ). Annotated draft genomic sequence from a Streptococcus pneumoniae type 19F clinical isolate. . Microb Drug Resist 7:, 99–125. [CrossRef] [PubMed]
    [Google Scholar]
  13. Dragon-Durey M. A. , Frémeaux-Bacchi V. , Loirat C. , Blouin J. , Niaudet P. , Deschenes G. , Coppo P. , Herman Fridman W. , Weiss L. . ( 2004; ). Heterozygous and homozygous factor H deficiencies associated with hemolytic uremic syndrome or membranoproliferative glomerulonephritis: report and genetic analysis of 16 cases. . J Am Soc Nephrol 15:, 787–795. [CrossRef] [PubMed]
    [Google Scholar]
  14. Erickson L. C. , Smith W. S. , Biswas A. K. , Camarca M. A. , Waecker N. J. Jr . ( 1994; ). Streptococcus pneumoniae-induced hemolytic uremic syndrome: a case for early diagnosis. . Pediatr Nephrol 8:, 211–213. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hendriksen W. T. , Kloosterman T. G. , Bootsma H. J. , Estevão S. , de Groot R. , Kuipers O. P. , Hermans P. W. . ( 2008; ). Site-specific contributions of glutamine-dependent regulator GlnR and GlnR-regulated genes to virulence of Streptococcus pneumoniae . . Infect Immun 76:, 1230–1238. [CrossRef] [PubMed]
    [Google Scholar]
  16. Hiller N. L. , Janto B. , Hogg J. S. , Boissy R. , Yu S. , Powell E. , Keefe R. , Ehrlich N. E. , Shen K. . & other authors ( 2007; ). Comparative genomic analyses of seventeen Streptococcus pneumoniae strains: insights into the pneumococcal supragenome. . J Bacteriol 189:, 8186–8195. [CrossRef] [PubMed]
    [Google Scholar]
  17. Hopkins C. K. , Yuan S. , Lu Q. , Ziman A. , Goldfinger D. . ( 2008; ). A severe case of atypical hemolytic uremic syndrome associated with pneumococcal infection and T activation treated successfully with plasma exchange. . Transfusion 48:, 2448–2452. [CrossRef] [PubMed]
    [Google Scholar]
  18. Janapatla R. P. , Hsu M. H. , Hsieh Y. C. , Lee H. Y. , Lin T. Y. , Chiu C. H. . ( 2013; ). Necrotizing pneumonia caused by nanC-carrying serotypes is associated with pneumococcal haemolytic uraemic syndrome in children. . Clin Microbiol Infect 19:, 480–486. [CrossRef] [PubMed]
    [Google Scholar]
  19. Jarva H. , Hellwage J. , Jokiranta T. S. , Lehtinen M. J. , Zipfel P. F. , Meri S. . ( 2004; ). The group B streptococcal β and pneumococcal Hic proteins are structurally related immune evasion molecules that bind the complement inhibitor factor H in an analogous fashion. . J Immunol 172:, 3111–3118.[PubMed] [CrossRef]
    [Google Scholar]
  20. Jefferies J. M. , Johnston C. H. , Kirkham L. A. , Cowan G. J. , Ross K. S. , Smith A. , Clarke S. C. , Brueggemann A. B. , George R. C. . & other authors ( 2007; ). Presence of nonhemolytic pneumolysin in serotypes of Streptococcus pneumoniae associated with disease outbreaks. . J Infect Dis 196:, 936–944. [CrossRef] [PubMed]
    [Google Scholar]
  21. Johnston C. , Hinds J. , Smith A. , van der Linden M. , Van Eldere J. , Mitchell T. J. . ( 2010; ). Detection of large numbers of pneumococcal virulence genes in streptococci of the mitis group. . J Clin Microbiol 48:, 2762–2769. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kaplan S. L. , Mason E. O. Jr , Barson W. J. , Wald E. R. , Arditi M. , Tan T. Q. , Schutze G. E. , Bradley J. S. , Givner L. B. . & other authors ( 1998; ). Three-year multicenter surveillance of systemic pneumococcal infections in children. . Pediatrics 102:, 538–545. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kim Y. D. , Prakash U. , Weber G. F. , Hargie M. . ( 1979; ). Nature of human serum blood group T antibodies. . Immunol Commun 8:, 397–406.[PubMed]
    [Google Scholar]
  24. Kim H. J. , Kim S. I. , Ratnayake-Lecamwasam M. , Tachikawa K. , Sonenshein A. L. , Strauch M. . ( 2003; ). Complex regulation of the Bacillus subtilis aconitase gene. . J Bacteriol 185:, 1672–1680. [CrossRef] [PubMed]
    [Google Scholar]
  25. King S. J. , Whatmore A. M. , Dowson C. G. . ( 2005; ). NanA, a neuraminidase from Streptococcus pneumoniae, shows high levels of sequence diversity, at least in part through recombination with Streptococcus oralis . . J Bacteriol 187:, 5376–5386. [CrossRef] [PubMed]
    [Google Scholar]
  26. Klein P. J. , Bulla M. , Newman R. A. , Müller P. , Uhlenbruck G. , Schaefer H. E. , Krüger G. , Fisher R. . ( 1977; ). Thomsen–Friedenreich antigen in haemolytic-uraemic syndrome. . Lancet 310:, 1024–1025. [CrossRef] [PubMed]
    [Google Scholar]
  27. Kloosterman T. G. , Hendriksen W. T. , Bijlsma J. J. , Bootsma H. J. , van Hijum S. A. , Kok J. , Hermans P. W. , Kuipers O. P. . ( 2006; ). Regulation of glutamine and glutamate metabolism by GlnR and GlnA in Streptococcus pneumoniae . . J Biol Chem 281:, 25097–25109. [CrossRef] [PubMed]
    [Google Scholar]
  28. Krysan D. J. , Flynn J. T. . ( 2001; ). Renal transplantation after Streptococcus pneumoniae-associated hemolytic uremic syndrome. . Am J Kidney Dis 37:, E15. [CrossRef] [PubMed]
    [Google Scholar]
  29. Lee C. F. , Liu S. C. , Lue K. H. , Chen J. P. , Sheu J. N. . ( 2006; ). Pneumococcal pneumonia with empyema and hemolytic uremic syndrome in children: report of three cases. . J Microbiol Immunol Infect 39:, 348–352.[PubMed]
    [Google Scholar]
  30. Manco S. , Hernon F. , Yesilkaya H. , Paton J. C. , Andrew P. W. , Kadioglu A. . ( 2006; ). Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis. . Infect Immun 74:, 4014–4020. [CrossRef] [PubMed]
    [Google Scholar]
  31. McGraw M. E. , Lendon M. , Stevens R. F. , Postlethwaite R. J. , Taylor C. M. . ( 1989; ). Haemolytic uraemic syndrome and the Thomsen–Friedenreich antigen. . Pediatr Nephrol 3:, 135–139. [CrossRef] [PubMed]
    [Google Scholar]
  32. Mizusawa Y. , Pitcher L. A. , Burke J. R. , Falk M. C. , Mizushima W. . ( 1996; ). Survey of haemolytic-uraemic syndrome in Queensland 1979–1995. . Med J Aust 165:, 188–191.[PubMed]
    [Google Scholar]
  33. Muller P. Y. , Janovjak H. , Miserez A. R. , Dobbie Z. . ( 2002; ). Processing of gene expression data generated by quantitative real-time RT-PCR. . Biotechniques 32:, 1372–1374, 1376, 1378–1379.[PubMed]
    [Google Scholar]
  34. Nath K. A. , Hostetter M. K. , Hostetter T. H. . ( 1991; ). Increased ammoniagenesis as a determinant of progressive renal injury. . Am J Kidney Dis 17:, 654–657.[PubMed] [CrossRef]
    [Google Scholar]
  35. Nathanson S. , Deschênes G. . ( 2001; ). Prognosis of Streptococcus pneumoniae-induced hemolytic uremic syndrome. . Pediatr Nephrol 16:, 362–365. [CrossRef] [PubMed]
    [Google Scholar]
  36. Pettigrew M. M. , Fennie K. P. , York M. P. , Daniels J. , Ghaffar F. . ( 2006; ). Variation in the presence of neuraminidase genes among Streptococcus pneumoniae isolates with identical sequence types. . Infect Immun 74:, 3360–3365. [CrossRef] [PubMed]
    [Google Scholar]
  37. Seger R. , Joller P. , Baerlocher K. , Kenny A. , Dulake C. , Leumann E. , Spierig M. , Hitzig W. H. . ( 1980; ). Hemolytic-uremic syndrome associated with neuraminidase-producing microorganisms: treatment by exchange transfusion. . Helv Paediatr Acta 35:, 359–367.[PubMed]
    [Google Scholar]
  38. Shivers R. P. , Sonenshein A. L. . ( 2005; ). Bacillus subtilis ilvB operon: an intersection of global regulons. . Mol Microbiol 56:, 1549–1559. [CrossRef] [PubMed]
    [Google Scholar]
  39. Silva N. A. , McCluskey J. , Jefferies J. M. , Hinds J. , Smith A. , Clarke S. C. , Mitchell T. J. , Paterson G. K. . ( 2006; ). Genomic diversity between strains of the same serotype and multilocus sequence type among pneumococcal clinical isolates. . Infect Immun 74:, 3513–3518. [CrossRef] [PubMed]
    [Google Scholar]
  40. Tettelin H. , Nelson K. E. , Paulsen I. T. , Eisen J. A. , Read T. D. , Peterson S. , Heidelberg J. , DeBoy R. T. , Haft D. H. . & other authors ( 2001; ). Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. . Science 293:, 498–506. [CrossRef] [PubMed]
    [Google Scholar]
  41. Waters A. M. , Kerecuk L. , Luk D. , Haq M. R. , Fitzpatrick M. M. , Gilbert R. D. , Inward C. , Jones C. , Pichon B. . & other authors ( 2007; ). Hemolytic uremic syndrome associated with invasive pneumococcal disease: the United Kingdom experience. . J Pediatr 151:, 140–144. [CrossRef] [PubMed]
    [Google Scholar]
  42. Yesilkaya H. , Soma-Haddrick S. , Crennell S. J. , Andrew P. W. . ( 2006; ). Identification of amino acids essential for catalytic activity of pneumococcal neuraminidase A. . Res Microbiol 157:, 569–574. [CrossRef] [PubMed]
    [Google Scholar]
  43. Zipfel P. F. , Hallström T. , Hammerschmidt S. , Skerka C. . ( 2008; ). The complement fitness factor H: role in human diseases and for immune escape of pathogens, like pneumococci. . Vaccine 26: (Suppl 8), I67–I74. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.063479-0
Loading
/content/journal/jmm/10.1099/jmm.0.063479-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error