1887

Abstract

causes a range of clinical disease in paediatric patients and is of increasing concern due to growing antibiotic resistance, yet little is known about the relative distribution of commensal and pathogens throughout the population structure of . We conducted a prospective, observational study of 92 isolates from Seattle Children’s Hospital, including 49 disease isolates from blood and urine (13 and 36 isolates, respectively) and 43 colonization isolates from stool. Susceptibility to 20 antimicrobials was evaluated using disc diffusion, VITEK 2 and Etest. Strain relatedness was investigated using multilocus sequence typing (MLST). Demographic and clinical characteristics were largely similar between disease and colonization cohorts, with 85.7 and 74.4 % of disease and colonization cohort patients, respectively, having an underlying medical condition; the sole exception was a relative abundance of patients with urologic or renal abnormalities in the disease cohort, consistent with the predominance of urine specimens among the disease isolates. With regard to antibiotic susceptibility properties, no significant differences were noted between the disease and colonization cohorts. Using molecular analysis, 71 unique sequence types (STs) were distinguished, with novel MLST findings evident in both cohorts; 43 (46.7 %) isolates represented novel STs, including 22 with a novel allele sequence. Thirteen STs contained multiple isolates and all seven isolates with resistance to three or more antibiotic classes were within one of four multirepresentative STs. This study demonstrates that nearly half of paediatric isolates represent novel STs, with clustering of multidrug resistance within specific STs. These findings expand our understanding of the intersection of bacterial population structure, human colonization ecology and multidrug resistance in

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.063354-0
2014-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/4/610.html?itemId=/content/journal/jmm/10.1099/jmm.0.063354-0&mimeType=html&fmt=ahah

References

  1. Ben-David D., Kordevani R., Keller N., Tal I., Marzel A., Gal-Mor O., Maor Y., Rahav G. 2012; Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. Clin Microbiol Infect 18:54–60 [View Article][PubMed]
    [Google Scholar]
  2. Borer A., Saidel-Odes L., Eskira S., Nativ R., Riesenberg K., Livshiz-Riven I., Schlaeffer F., Sherf M., Peled N. 2012; Risk factors for developing clinical infection with carbapenem-resistant Klebsiella pneumoniae in hospital patients initially only colonized with carbapenem-resistant K. pneumoniae. Am J Infect Control 40:421–425 [View Article][PubMed]
    [Google Scholar]
  3. Bratu S., Landman D., Haag R., Recco R., Eramo A., Alam M., Quale J. 2005; Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med 165:1430–1435 [View Article][PubMed]
    [Google Scholar]
  4. CLSI 2011 Performance Standards for Antimicrobial Susceptibility Testing Approved Standard, 24th Informational Supplement M100-S24 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  5. Coelho A., Piedra-Carrasco N., Bartolomé R., Quintero-Zarate J. N., Larrosa N., Cornejo-Sánchez T., Prats G., Garcillán-Barcia M. P., de la Cruz F., González-Lopéz J. J. 2012; Role of IncHI2 plasmids harbouring blaVIM-1, blaCTX-M-9, aac(6′)-Ib and qnrA genes in the spread of multiresistant Enterobacter cloacae and Klebsiella pneumoniae strains in different units at Hospital Vall d’Hebron, Barcelona, Spain. Int J Antimicrob Agents 39:514–517 [View Article][PubMed]
    [Google Scholar]
  6. Diancourt L., Passet V., Verhoef J., Grimont P. A., Brisse S. 2005; Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 43:4178–4182 [View Article][PubMed]
    [Google Scholar]
  7. Jacoby G. A., Han P. 1996; Detection of extended-spectrum beta-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol 34:908–911[PubMed]
    [Google Scholar]
  8. Johnson J. R., Johnston B., Clabots C., Kuskowski M. A., Castanheira M. 2010; Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin Infect Dis 51:286–294 [View Article][PubMed]
    [Google Scholar]
  9. Johnson J. R., Porter S. B., Zhanel G., Kuskowski M. A., Denamur E. 2012a; Virulence of Escherichia coli clinical isolates in a murine sepsis model in relation to sequence type ST131 status, fluoroquinolone resistance, and virulence genotype. Infect Immun 80:1554–1562 [View Article][PubMed]
    [Google Scholar]
  10. Johnson J. R., Urban C., Weissman S. J., Jorgensen J. H., Lewis J. S. II, Hansen G., Edelstein P. H., Robicsek A., Cleary T.& other authors ( 2012b; Molecular epidemiological analysis of Escherichia coli sequence type ST131 (O25:H4) and blaCTX-M-15 among extended-spectrum-β-lactamase-producing E. coli from the United States, 2000 to 2009. Antimicrob Agents Chemother 56:2364–2370 [View Article][PubMed]
    [Google Scholar]
  11. Kitchel B., Rasheed J. K., Patel J. B., Srinivasan A., Navon-Venezia S., Carmeli Y., Brolund A., Giske C. G. 2009; Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother 53:3365–3370 [View Article][PubMed]
    [Google Scholar]
  12. Kumarasamy K. K., Toleman M. A., Walsh T. R., Bagaria J., Butt F., Balakrishnan R., Chaudhary U., Doumith M., Giske C. G.& other authors ( 2010; Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10:597–602 [View Article][PubMed]
    [Google Scholar]
  13. Mandell G. L., Bennett J. E., Dolin R. 2010 Principles and Practice of Infectious Diseases, 7th edn. Philadelphia, PA: Churchill Livingstone;
    [Google Scholar]
  14. Moellering R. C. Jr 2010; NDM-1 – a cause for worldwide concern. N Engl J Med 363:2377–2379 [View Article][PubMed]
    [Google Scholar]
  15. Nordmann P., Cuzon G., Naas T. 2009; The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9:228–236 [View Article][PubMed]
    [Google Scholar]
  16. Orsi G. B., García-Fernández A., Giordano A., Venditti C., Bencardino A., Gianfreda R., Falcone M., Carattoli A., Venditti M. 2011; Risk factors and clinical significance of ertapenem-resistant Klebsiella pneumoniae in hospitalised patients. J Hosp Infect 78:54–58 [View Article][PubMed]
    [Google Scholar]
  17. Oteo J., Cuevas O., López-Rodríguez I., Banderas-Florido A., Vindel A., Pérez-Vázquez M., Bautista V., Arroyo M., García-Caballero J.& other authors ( 2009; Emergence of CTX-M-15-producing Klebsiella pneumoniae of multilocus sequence types 1, 11, 14, 17, 20, 35 and 36 as pathogens and colonizers in newborns and adults. J Antimicrob Chemother 64:524–528 [View Article][PubMed]
    [Google Scholar]
  18. Pitout J. D. 2012; Extraintestinal pathogenic Escherichia coli: a combination of virulence with antibiotic resistance. Front Microbiol 3:9 [View Article][PubMed]
    [Google Scholar]
  19. Salyers A. A., Gupta A., Wang Y. 2004; Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12:412–416 [View Article][PubMed]
    [Google Scholar]
  20. Sánchez-Romero I., Asensio A., Oteo J., Muñoz-Algarra M., Isidoro B., Vindel A., Alvarez-Avello J., Balandín-Moreno B., Cuevas O.& other authors ( 2012; Nosocomial outbreak of VIM-1-producing Klebsiella pneumoniae isolates of multilocus sequence type 15: molecular basis, clinical risk factors, and outcome. Antimicrob Agents Chemother 56:420–427 [View Article][PubMed]
    [Google Scholar]
  21. Schjørring S., Struve C., Krogfelt K. A. 2008; Transfer of antimicrobial resistance plasmids from Klebsiella pneumoniae to Escherichia coli in the mouse intestine. J Antimicrob Chemother 62:1086–1093 [View Article][PubMed]
    [Google Scholar]
  22. Shin S. Y., Bae I. K., Kim J., Jeong S. H., Yong D., Kim J. M., Lee K. 2012; Resistance to carbapenems in sequence type 11 Klebsiella pneumoniae is related to DHA-1 and loss of OmpK35 and/or OmpK36. J Med Microbiol 61:239–245 [View Article][PubMed]
    [Google Scholar]
  23. Sidjabat H. E., Silveira F. P., Potoski B. A., Abu-Elmagd K. M., Adams-Haduch J. M., Paterson D. L., Doi Y. 2009; Interspecies spread of Klebsiella pneumoniae carbapenemase gene in a single patient. Clin Infect Dis 49:1736–1738 [View Article][PubMed]
    [Google Scholar]
  24. Snyder G. M., O’Fallon E., D’Agata E. M. 2011; Co-colonization with multiple different species of multidrug-resistant gram-negative bacteria. Am J Infect Control 39:506–510 [View Article][PubMed]
    [Google Scholar]
  25. Viau R. A., Hujer A. M., Marshall S. H., Perez F., Hujer K. M., Briceño D. F., Dul M., Jacobs M. R., Grossberg R.& other authors ( 2012; “Silent” dissemination of Klebsiella pneumoniae isolates bearing K. pneumoniae carbapenemase in a long-term care facility for children and young adults in Northeast Ohio. Clin Infect Dis 54:1314–1321 [View Article][PubMed]
    [Google Scholar]
  26. Woerther P. L., Angebault C., Jacquier H., Hugede H. C., Janssens A. C., Sayadi S., El Mniai A., Armand-Lefèvre L., Ruppé E.& other authors ( 2011; Massive increase, spread, and exchange of extended spectrum β-lactamase-encoding genes among intestinal Enterobacteriaceae in hospitalized children with severe acute malnutrition in Niger. Clin Infect Dis 53:677–685 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.063354-0
Loading
/content/journal/jmm/10.1099/jmm.0.063354-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error