1887

Abstract

Resistance to third-generation cephalosporins in non-typhoidal (NTS) is emerging worldwide. We report the occurrence of extended-spectrum beta-lactamase (ESBL) phenotypes in 53.4 % of NTS isolated over a period of nine years from gastroenteritis cases. ESBL and AmpC co-production was observed in 21 % of the isolates. Occurrence of and resistance genes was observed in 11.6 % and 37 % of the isolates respectively. Overall, serovar Senftenberg was the predominant serovar carrying and resistance genes. We report for the first time from India, one isolate each of serovar Thompson, . serovar Infantis and serovar Newport, carrying the gene. We also report for the first time from India, a case of gastroenteritis due to serovar Thompson.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.061416-0
2014-01-01
2020-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/1/66.html?itemId=/content/journal/jmm/10.1099/jmm.0.061416-0&mimeType=html&fmt=ahah

References

  1. Angulo F. J., Johnson K. R., Tauxe R. V., Cohen M. L. 2000; Origins and consequences of antimicrobial-resistant non-typhoidal Salmonella: implications for the use of fluoroquinolones in food animals. Microb Drug Resist 6:77–83 [CrossRef][PubMed]
    [Google Scholar]
  2. Arlet G., Barrett T. J., Butaye P., Cloeckaert A., Mulvey M. R., White D. G. 2006; Salmonella resistant to extended-spectrum cephalosporins: prevalence and epidemiology. Microbes Infect 8:1945–1954 [CrossRef][PubMed]
    [Google Scholar]
  3. Black J. A., Moland E. S., Thomson K. S. 2005; AmpC disk test for detection of plasmid-mediated AmpC beta-lactamases in Enterobacteriaceae lacking chromosomal AmpC beta-lactamases. J Clin Microbiol 43:3110–3113 [CrossRef][PubMed]
    [Google Scholar]
  4. Devasia R. A., Varma J. K., Whichard J., Gettner S., Cronquist A. B., Hurd S., Segler S., Smith K., Hoefer D. other authors 2005; Antimicrobial use and outcomes in patients with multidrug-resistant and pansusceptible Salmonella Newport infections, 2002–2003. Microb Drug Resist 11:371–377 [CrossRef][PubMed]
    [Google Scholar]
  5. Dunne E. F., Fey P. D., Kludt P., Reporter R., Mostashari F., Shillam P., Wicklund J., Miller C., Holland B. other authors 2000; Emergence of domestically acquired ceftriaxone-resistant Salmonella infections associated with AmpC β-lactamase. JAMA 284:3151–3156 [CrossRef][PubMed]
    [Google Scholar]
  6. Endimiani A., Perez F., Bonomo R. A. 2008; Cefepime: a reappraisal in an era of increasing antimicrobial resistance. Expert Rev Anti Infect Ther 6:805–824 [CrossRef][PubMed]
    [Google Scholar]
  7. Frye J. G., Fedorka-Cray P. J. 2007; Prevalence, distribution and characterisation of ceftiofur resistance in Salmonella enterica isolated from animals in the USA from 1999 to 2003. Int J Antimicrob Agents 30:134–142 [CrossRef][PubMed]
    [Google Scholar]
  8. Gniadkowski M. 2001; Evolution and epidemiology of extended-spectrum β-lactamases (ESBLs) and ESBL-producing microorganisms. Clin Microbiol Infect 7:597–608 [CrossRef][PubMed]
    [Google Scholar]
  9. Grimont P. A. D., Weill F.-X. 2007 Antigenic Formulae of the Salmonella Serovars, 9th edn. WHO Collaborating Centre for Reference and Research on Salmonella Paris: Pasteur Institute; http://www.pasteur.fr/ip/portal/action/WebdriveActionEvent/oid/01s-000036-089
    [Google Scholar]
  10. Gunell M., Kotilainen P., Jalava J., Huovinen P., Siitonen A., Hakanen A. J. 2010; In vitro activity of azithromycin against non-typhoidal Salmonella enterica . Antimicrob Agents Chemother 54:3498–3501 [CrossRef][PubMed]
    [Google Scholar]
  11. Gupta V., Ray P., Sharma M. 1999; Antimicrobial resistance pattern of Shigella and non-typhi Salmonella isolated from patients with diarrhoea. Indian J Med Res 109:43–45
    [Google Scholar]
  12. Heider L. C., Hoet A. E., Wittum T. E., Khaitsa M. L., Love B. C., Huston C. L., Morley P. S., Funk J. A., Gebreyes W. A. 2009; Genetic and phenotypic characterization of the blaCMY gene from Escherichia coli and Salmonella enterica isolated from food-producing animals, humans, the environment, and retail meat. Foodborne Pathog Dis 6:1235–1240 [CrossRef][PubMed]
    [Google Scholar]
  13. Jabeen K., Zafar A., Irfan S., Khan E., Mehraj V., Hasan R. 2010; Increase in isolation of extended-spectrum beta-lactamase-producing multidrug-resistant non-typhoidal salmonellae in Pakistan. BMC Infect Dis 10:101 [CrossRef][PubMed]
    [Google Scholar]
  14. Jacoby G. A., Mills D. M., Chow N. 2004; Role of beta-lactamases and porins in resistance to ertapenem and other beta-lactams in Klebsiella pneumoniae . Antimicrob Agents Chemother 48:3203–3206 [CrossRef][PubMed]
    [Google Scholar]
  15. Koeck J. L., Arlet G., Philippon A., Basmaciogullari S., Thien H. V., Buisson Y., Cavallo J. D. 1997; A plasmid-mediated CMY-2 beta-lactamase from an Algerian clinical isolate of Salmonella senftenberg . FEMS Microbiol Lett 152:255–260 [CrossRef][PubMed]
    [Google Scholar]
  16. Kruger T., Szabo D., Keddy K. H., Deeley K., Marsh J. W., Hujer A. M., Bonomo R. A., Paterson D. L. 2004; Infections with non-typhoidal Salmonella species producing TEM-63 or a novel TEM enzyme, TEM-131, in South Africa. Antimicrob Agents Chemother 48:4263–4270 [CrossRef][PubMed]
    [Google Scholar]
  17. Li W. C., Huang F. Y., Liu C. P., Weng L. C., Wang N. Y., Chiu N. C., Chiang C. S. 2005; Ceftriaxone resistance of non-typhoidal Salmonella enterica isolates in Northern Taiwan attributable to production of CTX-M-14 and CMY-2 beta-lactamases. J Clin Microbiol 43:3237–3243 [CrossRef][PubMed]
    [Google Scholar]
  18. Menezes G. A., Khan M. A., Harish B. N., Parija S. C., Goessens W., Vidyalakshmi K., Baliga S., Hays J. P. 2010; Molecular characterization of antimicrobial resistance in non-typhoidal salmonellae associated with systemic manifestations from India. J Med Microbiol 59:1477–1483 [CrossRef][PubMed]
    [Google Scholar]
  19. Miriagou V., Tassios P. T., Legakis N. J., Tzouvelekis L. S. 2004; Expanded-spectrum cephalosporin resistance in non-typhoid Salmonella . Int J Antimicrob Agents 23:547–555 [CrossRef][PubMed]
    [Google Scholar]
  20. Parry C. M. 2003; Antimicrobial drug resistance in Salmonella enterica . Curr Opin Infect Dis 16:467–472 [CrossRef][PubMed]
    [Google Scholar]
  21. Peirano G., Agersø Y., Aarestrup F. M., dos Prazeres Rodrigues D. 2005; Occurrence of integrons and resistance genes among sulphonamide-resistant Shigella spp. from Brazil. J Antimicrob Chemother 55:301–305 [CrossRef][PubMed]
    [Google Scholar]
  22. Piddock L. J. V. 2002; Fluoroquinolone resistance in Salmonella serovars isolated from humans and food animals. FEMS Microbiol Rev 26:3–16[PubMed] [CrossRef]
    [Google Scholar]
  23. Rotimi V. O., Jamal W., Pal T., Sovenned A., Albert M. J. 2008; Emergence of CTX-M-15 type extended-spectrum beta-lactamase-producing Salmonella spp. in Kuwait and the United Arab Emirates. J Med Microbiol 57:881–886 [CrossRef][PubMed]
    [Google Scholar]
  24. Su L. H., Wu T. L., Chia J. H., Chu C., Kuo A. J., Chiu C. H. 2005; Increasing ceftriaxone resistance in Salmonella isolates from a university hospital in Taiwan. J Antimicrob Chemother 55:846–852 [CrossRef][PubMed]
    [Google Scholar]
  25. Szych J., Gierczyński R., Wardak S., Cieślik A. 2005; Wystepowanie i charakterystyka szczepów opornych na antybiotyki oksy-imino-betalaktamowe wśród szczepów Salmonella enterica subsp. enterica izolowanych w Polsce. Med Dosw Mikrobiol 57:115–130[PubMed]
    [Google Scholar]
  26. Taneja N., Mewara A., Kumar A., Verma G., Sharma M. 2012; Cephalosporin-resistant Shigella flexneri over 9 years (2001–09) in India. J Antimicrob Chemother 67:1347–1353 [CrossRef][PubMed]
    [Google Scholar]
  27. Uma B., Prabhakar K., Rajendran S., Lakshmi Sarayu Y. 2010; Prevalence of extended-spectrum beta-lactamases in Salmonella species isolated from patients with acute gastroenteritis. Indian J Gastroenterol 29:201–204 [CrossRef][PubMed]
    [Google Scholar]
  28. Verenkar M. P., Naik V. A., Rodrigues S., Singh I. 1992; Salmonellosis in Goa. Indian J Pathol Microbiol 35:75–80[PubMed]
    [Google Scholar]
  29. Whichard J. M., Gay K., Stevenson J. E., Joyce K. J., Cooper K. L., Omondi M., Medalla F., Jacoby G. A., Barrett T. J. 2007; Human Salmonella and concurrent decreased susceptibility to quinolones and extended-spectrum cephalosporins. Emerg Infect Dis 13:1681–1688 [CrossRef][PubMed]
    [Google Scholar]
  30. Winokur P. L., Canton R., Casellas J. M., Legakis N. 2001; Variations in the prevalence of strains expressing an extended-spectrum beta-lactamase phenotype and characterization of isolates from Europe, the Americas, and the Western Pacific region. Clin Infect Dis 32:Suppl. 2S94–S103 [CrossRef][PubMed]
    [Google Scholar]
  31. Zhao S. D., White D. G., McDermott P. F., Friedman S., English L., Ayers S., Meng J., Maurer J. J., Holland R., Walker R. D. 2001; Identification and expression of cephamycinase bla CMY genes in Escherichia coli and Salmonella isolates from food animals and ground meat. Antimicrob Agents Chemother 45:3647–3650 [CrossRef][PubMed]
    [Google Scholar]
  32. Zhao S., Blickenstaff K., Glenn A., Ayers S. L., Friedman S. L., Abbott J. W., McDermott P. F. 2009; Beta-lactam resistance in Salmonella strains isolated from retail meats in the United States by the National Antimicrobial Resistance Monitoring System between 2002 and 2006. Appl Environ Microbiol 75:7624–7630 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.061416-0
Loading
/content/journal/jmm/10.1099/jmm.0.061416-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error