1887

Abstract

, a flagellated, spiral-rod, Gram-negative bacterium, is the leading pathogen of human acute bacterial gastroenteritis worldwide, and chickens are regarded as a major reservoir of this micro-organism. Bacterial flagella, composed of more than 35 proteins, play important roles in colonization and adhesion to the mucosal surface of chicken caeca. In this study, the flagellar capping protein, FliD, encoded by the gene, from the D1-39 isolate was expressed and characterized, and its antigenicity determined. The gene comprised 1929 nt, potentially encoding a 642 aa peptide with a calculated molecular mass of 69.6 kDa. This gene was PCR amplified and overexpressed in . The recombinant FliD protein was purified by cobalt-chelating affinity chromatography and confirmed by nucleotide sequencing of the expression plasmid, SDS-PAGE analysis, His tag detection and matrix-assisted laser desorption/ionization time of flight mass spectrometry. The immunoblot data showed that the purified recombinant FliD protein reacted strongly to sera from broiler chickens older than 4 weeks, indicating that anti-FliD antibody may be prevalent in the poultry population. These results provide a rationale for further evaluation of the FliD protein as a vaccine candidate for broiler chickens to improve food safety for poultry.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.060095-0
2014-04-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/4/602.html?itemId=/content/journal/jmm/10.1099/jmm.0.060095-0&mimeType=html&fmt=ahah

References

  1. Abu-Qarn M. , Eichler J. , Sharon N. . ( 2008; ). Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. . Curr Opin Struct Biol 18:, 544–550. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bahrndorff S. , Rangstrup-Christensen L. , Nordentoft S. , Hald B. . ( 2013; ). Foodborne disease prevention and broiler chickens with reduced Campylobacter infection. . Emerg Infect Dis 19:, 425–430. [CrossRef] [PubMed]
    [Google Scholar]
  3. Berg H. C. . ( 2003; ). The rotary motor of bacterial flagella. . Annu Rev Biochem 72:, 19–54. [CrossRef] [PubMed]
    [Google Scholar]
  4. Blair D. F. , Dutcher S. K. . ( 1992; ). Flagella in prokaryotes and lower eukaryotes. . Curr Opin Genet Dev 2:, 756–767. [CrossRef] [PubMed]
    [Google Scholar]
  5. Buckley A. M. , Wang J. , Hudson D. L. , Grant A. J. , Jones M. A. , Maskell D. J. , Stevens M. P. . ( 2010; ). Evaluation of live-attenuated Salmonella vaccines expressing Campylobacter antigens for control of C. jejuni in poultry. . Vaccine 28:, 1094–1105. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bullman S. , O’Leary J. , Corcoran D. , Sleator R. D. , Lucey B. . ( 2012; ). Molecular-based detection of non-culturable and emerging campylobacteria in patients presenting with gastroenteritis. . Epidemiol Infect 140:, 684–688. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cawthraw S. A. , Newell D. G. . ( 2010; ). Investigation of the presence and protective effects of maternal antibodies against Campylobacter jejuni in chickens. . Avian Dis 54:, 86–93. [CrossRef] [PubMed]
    [Google Scholar]
  8. Clark J. D. , Oakes R. D. , Redhead K. , Crouch C. F. , Francis M. J. , Tomley F. M. , Blake D. P. . ( 2012; ). Eimeria species parasites as novel vaccine delivery vectors: anti-Campylobacter jejuni protective immunity induced by Eimeria tenella-delivered CjaA. . Vaccine 30:, 2683–2688. [CrossRef] [PubMed]
    [Google Scholar]
  9. de Boer R. F. , Ott A. , Güren P. , van Zanten E. , van Belkum A. , Kooistra-Smid A. M. . ( 2013; ). Detection of Campylobacter species and Arcobacter butzleri in stool samples by use of real-time multiplex PCR. . J Clin Microbiol 51:, 253–259. [CrossRef] [PubMed]
    [Google Scholar]
  10. de Zoete M. R. , van Putten J. P. , Wagenaar J. A. . ( 2007; ). Vaccination of chickens against Campylobacter . . Vaccine 25:, 5548–5557. [CrossRef] [PubMed]
    [Google Scholar]
  11. Edgar R. C. . ( 2004; ). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef] [PubMed]
    [Google Scholar]
  12. European Food Safety Authority ( 2010; ). The community summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in the European Union in 2008. . EFSA J 8:, 1496.
    [Google Scholar]
  13. Ewing B. , Green P. . ( 1998; ). Base-calling of automated sequencer traces using phred. II. Error probabilities. . Genome Res 8:, 186–194. [CrossRef] [PubMed]
    [Google Scholar]
  14. Ewing B. , Hillier L. , Wendl M. C. , Green P. . ( 1998; ). Base-calling of automated sequencer traces using phred. I. Accuracy assessment. . Genome Res 8:, 175–185. [CrossRef] [PubMed]
    [Google Scholar]
  15. Ewing C. P. , Andreishcheva E. , Guerry P. . ( 2009; ). Functional characterization of flagellin glycosylation in Campylobacter jejuni 81-176. . J Bacteriol 191:, 7086–7093. [CrossRef] [PubMed]
    [Google Scholar]
  16. Gasteiger E. , Gattiker A. , Hoogland C. , Ivanyi I. , Appel R. D. , Bairoch A. . ( 2003; ). ExPASy: The proteomics server for in-depth protein knowledge and analysis. . Nucleic Acids Res 31:, 3784–3788. [CrossRef] [PubMed]
    [Google Scholar]
  17. Gilbreath J. J. , Cody W. L. , Merrell D. S. , Hendrixson D. R. . ( 2011; ). Change is good: variations in common biological mechanisms in the epsilonproteobacterial genera Campylobacter and Helicobacter . . Microbiol Mol Biol Rev 75:, 84–132. [CrossRef] [PubMed]
    [Google Scholar]
  18. Grant C. C. , Konkel M. E. , Cieplak W. Jr , Tompkins L. S. . ( 1993; ). Role of flagella in adherence, internalization, and translocation of Campylobacter jejuni in nonpolarized and polarized epithelial cell cultures. . Infect Immun 61:, 1764–1771.[PubMed]
    [Google Scholar]
  19. Guerry P. , Ewing C. P. , Schirm M. , Lorenzo M. , Kelly J. , Pattarini D. , Majam G. , Thibault P. , Logan S. . ( 2006; ). Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. . Mol Microbiol 60:, 299–311. [CrossRef] [PubMed]
    [Google Scholar]
  20. Hermans D. , Van Deun K. , Messens W. , Martel A. , Van Immerseel F. , Haesebrouck F. , Rasschaert G. , Heyndrickx M. , Pasmans F. . ( 2011; ). Campylobacter control in poultry by current intervention measures ineffective: urgent need for intensified fundamental research. . Vet Microbiol 152:, 219–228. [CrossRef] [PubMed]
    [Google Scholar]
  21. Hermans D. , Martel A. , Garmyn A. , Verlinden M. , Heyndrickx M. , Gantois I. , Haesebrouck F. , Pasmans F. . ( 2012a; ). Application of medium-chain fatty acids in drinking water increases Campylobacter jejuni colonization threshold in broiler chicks. . Poult Sci 91:, 1733–1738. [CrossRef] [PubMed]
    [Google Scholar]
  22. Hermans D. , Pasmans F. , Messens W. , Martel A. , Van Immerseel F. , Rasschaert G. , Heyndrickx M. , Van Deun K. , Haesebrouck F. . ( 2012b; ). Poultry as a host for the zoonotic pathogen Campylobacter jejuni . . Vector Borne Zoonotic Dis 12:, 89–98. [CrossRef] [PubMed]
    [Google Scholar]
  23. Hiett K. L. , Stintzi A. , Andacht T. M. , Kuntz R. L. , Seal B. S. . ( 2008; ). Genomic differences between Campylobacter jejuni isolates identify surface membrane and flagellar function gene products potentially important for colonizing the chicken intestine. . Funct Integr Genomics 8:, 407–420. [CrossRef] [PubMed]
    [Google Scholar]
  24. Hiett K. L. , Cox N. A. , Rothrock M. J. Jr . ( 2013; ). Polymerase chain reaction detection of naturally occurring Campylobacter in commercial broiler chicken embryos. . Poult Sci 92:, 1134–1137. [CrossRef] [PubMed]
    [Google Scholar]
  25. Hoffmann S. , Batz M. B. , Morris J. G. Jr . ( 2012; ). Annual cost of illness and quality-adjusted life year losses in the United States due to 14 foodborne pathogens. . J Food Prot 75:, 1292–1302. [CrossRef] [PubMed]
    [Google Scholar]
  26. Homma M. , Kutsukake K. , Iino T. , Yamaguchi S. . ( 1984; ). Hook-associated proteins essential for flagellar filament formation in Salmonella typhimurium . . J Bacteriol 157:, 100–108.[PubMed]
    [Google Scholar]
  27. Howard S. L. , Jagannathan A. , Soo E. C. , Hui J. P. , Aubry A. J. , Ahmed I. , Karlyshev A. , Kelly J. F. , Jones M. A. . & other authors ( 2009; ). Campylobacter jejuni glycosylation island important in cell charge, legionaminic acid biosynthesis, and colonization of chickens. . Infect Immun 77:, 2544–2556. [CrossRef] [PubMed]
    [Google Scholar]
  28. Ikeda T. , Homma M. , Iino T. , Asakura S. , Kamiya R. . ( 1987; ). Localization and stoichiometry of hook-associated proteins within Salmonella typhimurium flagella. . J Bacteriol 169:, 1168–1173.[PubMed]
    [Google Scholar]
  29. Ikeda T. , Yamaguchi S. , Hotani H. . ( 1993; ). Flagellar growth in a filament-less Salmonella fliD mutant supplemented with purified hook-associated protein 2. . J Biochem 114:, 39–44.[PubMed]
    [Google Scholar]
  30. Kim J. S. , Chang J. H. , Chung S. I. , Yum J. S. . ( 1999; ). Molecular cloning and characterization of the Helicobacter pylori fliD gene, an essential factor in flagellar structure and motility. . J Bacteriol 181:, 6969–6976.[PubMed]
    [Google Scholar]
  31. Kowarik M. , Young N. M. , Numao S. , Schulz B. L. , Hug I. , Callewaert N. , Mills D. C. , Watson D. C. , Hernandez M. . & other authors ( 2006; ). Definition of the bacterial N-glycosylation site consensus sequence. . EMBO J 25:, 1957–1966. [CrossRef] [PubMed]
    [Google Scholar]
  32. Layton S. L. , Morgan M. J. , Cole K. , Kwon Y. M. , Donoghue D. J. , Hargis B. M. , Pumford N. R. . ( 2011; ). Evaluation of Salmonella-vectored Campylobacter peptide epitopes for reduction of Campylobacter jejuni in broiler chickens. . Clin Vaccine Immunol 18:, 449–454. [CrossRef] [PubMed]
    [Google Scholar]
  33. Lees-Miller R. G. , Iwashkiw J. A. , Scott N. E. , Seper A. , Vinogradov E. , Schild S. , Feldman M. F. . ( 2013; ). A common pathway for O-linked protein-glycosylation and synthesis of capsule in Acinetobacter baumannii . . Mol Microbiol 89:, 816–830. [CrossRef] [PubMed]
    [Google Scholar]
  34. Lertsethtakarn P. , Ottemann K. M. , Hendrixson D. R. . ( 2011; ). Motility and chemotaxis in Campylobacter and Helicobacter . . Annu Rev Microbiol 65:, 389–410. [CrossRef] [PubMed]
    [Google Scholar]
  35. Li S. , Chou H.-H. . ( 2004; ). lucy2: an interactive DNA sequence quality trimming and vector removal tool. . Bioinformatics 20:, 2865–2866. [CrossRef] [PubMed]
    [Google Scholar]
  36. Lin J. . ( 2009; ). Novel approaches for Campylobacter control in poultry. . Foodborne Pathog Dis 6:, 755–765. [CrossRef] [PubMed]
    [Google Scholar]
  37. Line J. E. , Svetoch E. A. , Eruslanov B. V. , Perelygin V. V. , Mitsevich E. V. , Mitsevich I. P. , Levchuk V. P. , Svetoch O. E. , Seal B. S. . & other authors ( 2008; ). Isolation and purification of enterocin E-760 with broad antimicrobial activity against Gram-positive and Gram-negative bacteria. . Antimicrob Agents Chemother 52:, 1094–1100. [CrossRef] [PubMed]
    [Google Scholar]
  38. Logan S. M. . ( 2006; ). Flagellar glycosylation – a new component of the motility repertoire. ? Microbiology 152:, 1249–1262. [CrossRef] [PubMed]
    [Google Scholar]
  39. Macnab R. M. . ( 2003; ). How bacteria assemble flagella. . Annu Rev Microbiol 57:, 77–100. [CrossRef] [PubMed]
    [Google Scholar]
  40. Meinersmann R. J. , Helsel L. O. , Fields P. I. , Hiett K. L. . ( 1997; ). Discrimination of Campylobacter jejuni isolates by fla gene sequencing. . J Clin Microbiol 35:, 2810–2814.[PubMed]
    [Google Scholar]
  41. Messens W. , Hartnett E. , Gellynck X. , Viaene J. , Halet D. , Herman L. , Grijspeerdt K. . ( 2007; ). Quantitative risk assessment of human campylobacteriosis through the consumption of chicken meat in Belgium. . In XVIII European Symposium on the Quality of Poultry Meat and XII European Symposium on the Quality of Eggs and Egg Products, pp. 167–168. Prague, Czech Republic, 2–5 September 2007.
    [Google Scholar]
  42. Nachamkin I. , Yang X. H. , Stern N. J. . ( 1993; ). Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: analysis with flagellar mutants. . Appl Environ Microbiol 59:, 1269–1273.[PubMed]
    [Google Scholar]
  43. Parkhill J. , Wren B. W. , Mungall K. , Ketley J. M. , Churcher C. , Basham D. , Chillingworth T. , Davies R. M. , Feltwell T. . & other authors ( 2000; ). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. . Nature 403:, 665–668. [CrossRef] [PubMed]
    [Google Scholar]
  44. Robyn J. , Rasschaert G. , Hermans D. , Pasmans F. , Heyndrickx M. . ( 2013; ). In vivo broiler experiments to assess anti-Campylobacter jejuni activity of a live Enterococcus faecalis strain. . Poult Sci 92:, 265–271. [CrossRef] [PubMed]
    [Google Scholar]
  45. Rollins D. M. , Colwell R. R. . ( 1986; ). Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. . Appl Environ Microbiol 52:, 531–538.[PubMed]
    [Google Scholar]
  46. Rosenquist H. , Nielsen N. L. , Sommer H. M. , Nørrung B. , Christensen B. B. . ( 2003; ). Quantitative risk assessment of human campylobacteriosis associated with thermophilic Campylobacter species in chickens. . Int J Food Microbiol 83:, 87–103. [CrossRef] [PubMed]
    [Google Scholar]
  47. Sahin O. , Zhang Q. , Meitzler J.C. , Harr B.S. , Morishita T.Y. , Mohan R. . ( 2001; ). Prevalence, antigenic specificity, and bactericidal activity of poultry anti-Campylobacter maternal antibodies. . Appl Environ Microbiol 67:, 3951–3957.[CrossRef]
    [Google Scholar]
  48. Sahin O. , Luo N. , Huang S. , Zhang Q. . ( 2003; ). Effect of Campylobacter-specific maternal antibodies on Campylobacter jejuni colonization in young chickens. . Appl Environ Microbiol 69:, 5372–5379. [CrossRef] [PubMed]
    [Google Scholar]
  49. Scallan E. , Hoekstra R. M. , Angulo F. J. , Tauxe R. V. , Widdowson M. A. , Roy S. L. , Jones J. L. , Griffin P. M. . ( 2011; ). Foodborne illness acquired in the United States – major pathogens. . Emerg Infect Dis 17:, 7–15.[PubMed] [CrossRef]
    [Google Scholar]
  50. Scott N. E. , Parker B. L. , Connolly A. M. , Paulech J. , Edwards A. V. , Crossett B. , Falconer L. , Kolarich D. , Djordjevic S. P. . & other authors ( 2011; ). Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. . Mol Cell Proteomics 10:, M000031–MCP201. [CrossRef] [PubMed]
    [Google Scholar]
  51. Shoaf-Sweeney K. D. , Larson C. L. , Tang X. , Konkel M. E. . ( 2008; ). Identification of Campylobacter jejuni proteins recognized by maternal antibodies of chickens. . Appl Environ Microbiol 74:, 6867–6875. [CrossRef] [PubMed]
    [Google Scholar]
  52. Steentoft C. , Vakhrushev S. Y. , Joshi H. J. , Kong Y. , Vester-Christensen M. B. , Schjoldager K. T. , Lavrsen K. , Dabelsteen S. , Pedersen N. B. . & other authors ( 2013; ). Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. . EMBO J 32:, 1478–1488. [CrossRef] [PubMed]
    [Google Scholar]
  53. Stern N. J. , Meinersmann R. J. , Dickerson H. W. . ( 1990; ). Influence of antibody treatment of Campylobacter jejuni on the dose required to colonize chicks. . Avian Dis 34:, 595–601. [CrossRef] [PubMed]
    [Google Scholar]
  54. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  55. Tasteyre A. , Barc M. C. , Collignon A. , Boureau H. , Karjalainen T. . ( 2001a; ). Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization. . Infect Immun 69:, 7937–7940. [CrossRef] [PubMed]
    [Google Scholar]
  56. Tasteyre A. , Karjalainen T. , Avesani V. , Delmée M. , Collignon A. , Bourlioux P. , Barc M. C. . ( 2001b; ). Molecular characterization of fliD gene encoding flagellar cap and its expression among Clostridium difficile isolates from different serogroups. . J Clin Microbiol 39:, 1178–1183. [CrossRef] [PubMed]
    [Google Scholar]
  57. Thibault P. , Logan S. M. , Kelly J. F. , Brisson J. R. , Ewing C. P. , Trust T. J. , Guerry P. . ( 2001; ). Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. . J Biol Chem 276:, 34862–34870. [CrossRef] [PubMed]
    [Google Scholar]
  58. Towbin H. , Staehelin T. , Gordon J. . ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. . Proc Natl Acad Sci U S A 76:, 4350–4354. [CrossRef] [PubMed]
    [Google Scholar]
  59. Wagenaar J. A. , Mevius D. J. , Havelaar A. H. . ( 2006; ). Campylobacter in primary animal production and control strategies to reduce the burden of human campylobacteriosis. . Rev Sci Tech 25:, 581–594.[PubMed]
    [Google Scholar]
  60. Wang J. , Betancourt A. M. , Mobley J. A. , Lamartiniere C. A. . ( 2011; ). Proteomic discovery of genistein action in the rat mammary gland. . J Proteome Res 10:, 1621–1631. [CrossRef] [PubMed]
    [Google Scholar]
  61. World Health Organization ( 2009; ). Diarrhoeal diseases: Campylobacter . . http://www.who.int/vaccine_research/diseases/diarrhoeal/en/index2.html. Accessed 28 February 2013.
  62. Wyszyńska A. , Raczko A. , Lis M. , Jagusztyn-Krynicka E. K. . ( 2004; ). Oral immunization of chickens with avirulent Salmonella vaccine strain carrying C. jejuni 72Dz/92 cjaA gene elicits specific humoral immune response associated with protection against challenge with wild-type Campylobacter . . Vaccine 22:, 1379–1389. [CrossRef] [PubMed]
    [Google Scholar]
  63. Yang C. , Jiang Y. , Huang K. , Zhu C. , Yin Y. , Gong J. H. , Yu H. . ( 2004; ). A real-time PCR assay for the detection and quantitation of Campylobacter jejuni using SYBR Green I and the LightCycler. . Yale J Biol Med 77:, 125–132.[PubMed]
    [Google Scholar]
  64. Yeh H. Y. , Klesius P. H. . ( 2011; ). Over-expression, purification and immune responses to Aeromonas hydrophila AL09-73 flagellar proteins. . Fish Shellfish Immunol 31:, 1278–1283. [CrossRef] [PubMed]
    [Google Scholar]
  65. Yeh H. Y. , Klesius P. H. . ( 2012; ). Construction, expression and characterization of 11 putative flagellar apparatus genes of Aeromonas hydrophila AL09-73. . J Fish Dis 35:, 853–860.[PubMed]
    [Google Scholar]
  66. Yeh H. Y. , Hiett K. L. , Line J. E. , Oakley B. B. , Seal B. S. . ( 2013; ). Construction, expression, purification and antigenicity of recombinant Campylobacter jejuni flagellar proteins. . Microbiol Res 168:, 192–198. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.060095-0
Loading
/content/journal/jmm/10.1099/jmm.0.060095-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error