1887

Abstract

Improved conventional PCR techniques are required for the rapid on-site detection of human and animal diseases. In this context, a PCR method using dry-stored reagents intended for the detection of spp. is presented. Basic PCR reagents (BSA, PCR buffer, MgCl and primers), which were dried on polyolefin matrices, showed stability at ambient temperatures for up to 10 months without any loss of functionality. An outstanding advantage of our amelioration is the elimination of PCR process errors caused by the improper storage and handling of liquid reagents. Moreover, our PCR-based amplification can be performed in less than 30 min, saving time compared with conventional detection methods. Thus, dry-reagent-based PCR is implementable in a suitcase-like modular device for the rapid on-site detection of microbial pathogens such as blackleg of ruminants caused by .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.060061-0
2013-10-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/10/1588.html?itemId=/content/journal/jmm/10.1099/jmm.0.060061-0&mimeType=html&fmt=ahah

References

  1. Ahlford A., Kjeldsen B., Reimers J., Lundmark A., Romani M., Wolff A., Syvänen A. C., Brivio M. 2010; Dried reagents for multiplex genotyping by tag-array minisequencing to be used in microfluidic devices. Analyst (Lond) 135:2377–2385 [View Article][PubMed]
    [Google Scholar]
  2. Ahn C. H., Choi J., Beaucage G., Nevin J. H., Lee J.-B., Puntambekar A., Lee J. Y. 2004; Disposable smart lab on a chip for point-of-care clinical diagnostics. Proc IEEE 92:154–173 [View Article]
    [Google Scholar]
  3. Bagge E., Lewerin S. S., Johansson K.-E. 2009; Detection and identification by PCR of Clostridium chauvoei in clinical isolates, bovine faeces and substrates from biogas plant. Acta Vet Scand 51:8 [View Article][PubMed]
    [Google Scholar]
  4. Bajaj-Elliott M., Hauer A. C. 2001; Basic RT-PCR for measurement of cytokine expression. In Interleukin Protocols (Methods in Molecular Medicine) vol. 60 pp. 49–58 Edited by O’Neill L. A. J., Bowie. A. Springer; New York: [View Article]
    [Google Scholar]
  5. Blaha T. 1989 Applied Veterinary Epidemiology Amsterdam: Elsevier Science;
    [Google Scholar]
  6. Garofolo G., Galante D., Serrecchia L., Buonavoglia D., Fasanella A. 2011; Development of a real time PCR Taqman assay based on the TPI gene for simultaneous identification of Clostridium chauvoei and Clostridium septicum. J Microbiol Methods 84:307–311 [View Article][PubMed]
    [Google Scholar]
  7. Griebel A., Rund S., Schönfeld F., Dörner W., Konrad R., Hardt S. 2004; Integrated polymer chip for two-dimensional capillary gel electrophoresis. Lab Chip 4:18–23 [View Article][PubMed]
    [Google Scholar]
  8. Halm A., Wagner M., Köfer J., Hein I. 2010; Novel real-time PCR assay for simultaneous detection and differentiation of Clostridium chauvoei and Clostridium septicum in clostridial myonecrosis. J Clin Microbiol 48:1093–1098 [View Article][PubMed]
    [Google Scholar]
  9. Hatheway C. L. 1990; Toxigenic clostridia. Clin Microbiol Rev 3:66–98[PubMed]
    [Google Scholar]
  10. Kim J., Byun D., Mauk M. G., Bau H. H. 2009; A disposable, self-contained PCR chip. Lab Chip 9:606–612 [View Article][PubMed]
    [Google Scholar]
  11. Knabbe C., Fritzsche W., Möller R. 2009; Chip-based detection methods. J Biophotonics 2:193–195 [View Article][PubMed]
    [Google Scholar]
  12. Koh C. G., Tan W., Zhao M. Q., Ricco A. J., Fan Z. H. 2003; Integrating polymerase chain reaction, valving, and electrophoresis in a plastic device for bacterial detection. Anal Chem 75:4591–4598 [View Article][PubMed]
    [Google Scholar]
  13. Lange M., Neubauer H., Seyboldt C. 2010; Development and validation of a multiplex real-time PCR for detection of Clostridium chauvoei and Clostridium septicum. Mol Cell Probes 24:204–210 [View Article][PubMed]
    [Google Scholar]
  14. Qiu X., Mauk M. G., Chen D., Liu C., Bau H. H. 2010; A large volume, portable, real-time PCR reactor. Lab Chip 10:3170–3177 [View Article][PubMed]
    [Google Scholar]
  15. Qu S., Shi Q., Zhou L., Guo Z., Zhou D., Zhai J., Yang R. 2010; Ambient stable quantitative PCR reagents for the detection of Yersinia pestis. PLoS Negl Trop Dis 4:e629 [View Article][PubMed]
    [Google Scholar]
  16. Quinn P. J., Markey B. K., Leonard F. C., FitzPatrick E. S., Fanning S., Hartigan P. J. 2011 Veterinary Microbiology and Microbial Disease Chichester: John Wiley;
    [Google Scholar]
  17. Sasaki Y., Yamamoto K., Kojima A., Tetsuka Y., Norimatsu M., Tamura Y. 2000; Rapid and direct detection of Clostridium chauvoei by PCR of the 16S–23S rDNA spacer region and partial 23S rDNA sequences. J Vet Med Sci 62:1275–1281 [View Article][PubMed]
    [Google Scholar]
  18. Sasaki Y., Yamamoto K., Amimoto K., Kojima A., Ogikubo Y., Norimatsu M., Ogata H., Tamura Y. 2001; Amplification of the 16S–23S rDNA spacer region for rapid detection of Clostridium chauvoei and Clostridium septicum. Res Vet Sci 71:227–229 [View Article][PubMed]
    [Google Scholar]
  19. Sasaki Y., Kojima A., Aoki H., Ogikubo Y., Takikawa N., Tamura Y. 2002; Phylogenetic analysis and PCR detection of Clostridium chauvoei, Clostridium haemolyticum, Clostridium novyi types A and B, and Clostridium septicum based on the flagellin gene. Vet Microbiol 86:257–267 [View Article][PubMed]
    [Google Scholar]
  20. Schüler T., Kretschmer R., Jessing S., Urban M., Fritzsche W., Möller R., Popp J. 2009; A disposable and cost efficient microfluidic device for the rapid chip-based electrical detection of DNA. Biosens Bioelectron 25:15–21 [View Article][PubMed]
    [Google Scholar]
  21. Seise B., Brinker A., Kretschmer R., Schwarz M., Rudolph B., Kaulfuß T., Urban M., Henkel T., Popp J., Möller R. 2011; Chip-based detection system for the on-site analysis of animal diseases. Eng Life Sci 11:148–156 [View Article]
    [Google Scholar]
  22. Takekawa J. Y., Iverson S. A., Schultz A. K., Hill N. J., Cardona C. J., Boyce W. M., Dudley J. P. 2010; Field detection of avian influenza virus in wild birds: evaluation of a portable rRT-PCR system and freeze-dried reagents. J Virol Methods 166:92–97 [View Article][PubMed]
    [Google Scholar]
  23. Takekawa J. Y., Hill N. J., Schultz A. K., Iverson S. A., Cardona C. J., Boyce W. M., Dudley J. P. 2011; Rapid diagnosis of avian influenza virus in wild birds: use of a portable rRT-PCR and freeze-dried reagents in the field. J Vis Exp 54:e2829[PubMed]
    [Google Scholar]
  24. Timoney J. F., Gillespie J. A., Scott F. W., Barlough J. E. 1988 Hagan and Bruner’s Microbiology and Infectious Diseases of Domestic Animals, 8th edn. Ithaca: Cornell University Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.060061-0
Loading
/content/journal/jmm/10.1099/jmm.0.060061-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error