1887

Abstract

The aim of this work was to evaluate the antibacterial activity of oleoresin and to determine its possible mechanism of action against bacteria of clinical and food interest. The antibacterial activity was determined by agar diffusion and dilution methods; the mechanism of action by transmission electron microscopy and by SDS-PAGE; the bioactive compounds by bioautography; and the chemical analysis by GC/MS. Oleoresin showed activity against nine of the 11 strains of bacteria tested. was the most sensitive, with a MIC corresponding to 0.03125 mg ml and with a bactericidal action. Oleoresin acted on the bacterial cell wall, removing proteins and the S-layer, and interfering with the cell-division process. This activity probably can be attributed to the action of terpenic compounds, among them the bisabolene compound. Gram-negative bacteria tested were not inhibited. oleoresin is a potential antibacterial, suggesting that this oil could be used as a therapeutic alternative, mainly against .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.060046-0
2013-07-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/7/1032.html?itemId=/content/journal/jmm/10.1099/jmm.0.060046-0&mimeType=html&fmt=ahah

References

  1. Adams R. P.. ( 2007;). Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. Carol Stream, IL:: Allured Publishing;.
    [Google Scholar]
  2. Budzik J. M., Marraffini L. A., Schneewind O.. ( 2007;). Assembly of pili on the surface of Bacillus cereus vegetative cells. . Mol Microbiol 66:, 495–510. [CrossRef][PubMed]
    [Google Scholar]
  3. Cascon V., Gilbert B.. ( 2000;). Characterization of the chemical composition of oleoresins of Copaifera guianensis Desf., Copaifera duckei Dwyer and Copaifera multijuga Hayne. . Phytochemistry 55:, 773–778. [CrossRef][PubMed]
    [Google Scholar]
  4. CLSI ( 2003;). Norma aprovada. Documento CLSI M2–A8, vol. 23. Padronização dos testes de sensibilidade a antimicrobianos por disco-difusão. Wayne, PA:: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  5. Duarte M. C. T., Leme E. E., Delarmelina C., Soares A. A., Figueira G. M., Sartoratto A.. ( 2007;). Activity of essential oils from Brazilian medicinal plants on Escherichia coli. . J Ethnopharmacol 111:, 197–201. [CrossRef][PubMed]
    [Google Scholar]
  6. Geris R., Silva I. G., Silva H. H. G., Barison A., Rodrigues-Filho E., Ferreira A. G.. ( 2008;). Diterpenoids from Copaifera reticulata Ducke with larvicidal activity against Aedes aegypti (L.) (Diptera, Culicidae). . Rev Inst Med Trop Sao Paulo 50:, 25–28. [CrossRef][PubMed]
    [Google Scholar]
  7. Gomes N. M., Rezende C. M., Fontes S. P., Matheus M. E., Fernandes P. D.. ( 2007;). Antinociceptive activity of Amazonian Copaiba oils. . J Ethnopharmacol 109:, 486–492. [CrossRef][PubMed]
    [Google Scholar]
  8. Govinden-Soulange J., Magan N., Gurib-Fakim A., Gauvin A., Smadja J., Kodja H.. ( 2004;). Chemical composition and in vitro antimicrobial activities of the essential oils from endemic Psiadia species growing in Mauritius. . Biol Pharm Bull 27:, 1814–1818. [CrossRef][PubMed]
    [Google Scholar]
  9. Huang M., Sanchez-Moreiras A. M., Abel C., Sohrabi R., Lee S., Gershenzon J., Tholl D.. ( 2012;). The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. . New Phytol 193:, 997–1008. [CrossRef][PubMed]
    [Google Scholar]
  10. Lameira O. A., Martins-da-Silva R. C. V., Zoghbi M. G. B., Oliveira E. C. P.. ( 2009;). Seasonal variation in the volatiles of Copaifera duckei Dwyer growing wild in the state of Pará-Brazil. . JEOR 21:, 105–107. [CrossRef]
    [Google Scholar]
  11. Leandro L. M., Vargas F. de S., Barbosa P. C. S., Neves J. K. O., da Silva J. A., da Veiga V. F. Jr. ( 2012;). Chemistry and biological activities of terpenoids from copaiba (Copaifera spp.) oleoresins. . Molecules 17:, 3866–3889. [CrossRef][PubMed]
    [Google Scholar]
  12. Maistro E. L., Carvalho J. C. T., Cascon V., Kaplan M. A. C.. ( 2005;). In vivo evaluation of the mutagenic potential and phytochemical characterization of oleoresin from Copaifera duckei Dwyer. . Genet Mol Biol 28:, 833–838. [CrossRef]
    [Google Scholar]
  13. Mendonça D. E., Onofre S. B.. ( 2009;). Atividade antimicrobiana do óleo-resina produzido pela copaíba-Copaifera multijuga Hayne (Leguminosae). . Rev Bras Farmacogn 19: (2b), 577–581. [CrossRef]
    [Google Scholar]
  14. Nascimento A. M. A., Brandão M. G. L., Oliveira G. B., Fortes I. C. P., Chartone-Souza E.. ( 2007;). Synergistic bactericidal activity of Eremanthus erythropappus oil or β-bisabolene with ampicillin against Staphylococcus aureus. . Antonie van Leeuwenhoek 92:, 95–100. [CrossRef][PubMed]
    [Google Scholar]
  15. NCCLS ( 1999;). Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline. Approved Standard. NCCLS document M26-A. Wayne, PA:: National Committee for Clinical Laboratory Standards;.
    [Google Scholar]
  16. NCCLS (2003). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 6th edn. Approved Standard M7–A6. Wayne, PA: National Committee for Clinical Laboratory Standards.
  17. Pacheco T. A. R. C., Barata L. E. S., Duarte M. C. T.. ( 2006;). Antimicrobial activity of copaiba (Copaifera spp) balsams. . Rev Bras Pl Med 8:, 123–124.
    [Google Scholar]
  18. Paiva L. A. P., Gurgel L. A., De Sousa E. T., Silveira E. R., Silva R. M., Santos F. A., Rao V. S. N.. ( 2004;). Protective effect of Copaifera langsdorffii oleo-resin against acetic acid-induced colitis in rats. . J Ethnopharmacol 93:, 51–56. [CrossRef][PubMed]
    [Google Scholar]
  19. Pieri F. A., Souza C. F., Costa J. C. M., Barrero M. A. O., Espeschit I. F., Silva V. O., Moreira M. A. S.. ( 2011;). Inhibition of Escherichia coli from mastitic milk by copaiba oil. . Semina 32:, 1929–1934.
    [Google Scholar]
  20. Pieri F. A., Silva V. O., Souza C. F., Costa J. C. M., Santos L. F., Moreira M. A. S.. ( 2012;). Antimicrobial profile screening of two oils of Copaifera genus. . Arq Bras Med Vet Zootec 64:, 241–244. [CrossRef]
    [Google Scholar]
  21. Rakotoniriana E. F., Rajaonarison J. F., Raoelison E. G., Rajaonarivelo J. P., Manga N., Solofoniaina M., Rakotonirina B., Randriamampionona D., Rabemanantsoa C. et al. ( 2010;). Antimicrobial activity of 23 endemic plants in Madagascar. . Trop J Pharm Res 9:, 165–171. [CrossRef]
    [Google Scholar]
  22. Rundegren J., Sjödin T., Petersson L., Hansson E., Jonsson I.. ( 1995;). Delmopinol interactions with cell walls of Gram-negative and Gram-positive oral bacteria. . Oral Microbiol Immunol 10:, 102–109. [CrossRef][PubMed]
    [Google Scholar]
  23. Santos A. O., Ueda-Nakamura T., Dias Filho B. P., Veiga V. F. Jr. Pinto A. C., Nakamura C. V.. ( 2008a;). Effect of Brazilian copaiba oils on Leishmania amazonensis. . J Ethnopharmacol 120:, 204–208. [CrossRef][PubMed]
    [Google Scholar]
  24. Santos A. O., Ueda-Nakamura T., Dias Filho B. P., Veiga V. F. Jr. Pinto A. C., Nakamura C. V.. ( 2008b;). Antimicrobial activity of Brazilian copaiba oils obtained from different species of the Copaifera genus. . Mem Inst Oswaldo Cruz 103:, 277–281. [CrossRef][PubMed]
    [Google Scholar]
  25. Santos R. C. V., dos Santos Alves C. F., Schneider T., Lopes L. Q. S., Aurich C., Giongo J. L., Brandelli A., de Almeida Vaucher R.. ( 2012;). Antimicrobial activity of Amazonian oils against Paenibacillus species. . J Invertebr Pathol 109:, 265–268. [CrossRef][PubMed]
    [Google Scholar]
  26. Silveira G. P., Nome F., Gesser J. C., M. M., Terenzi H.. ( 2006;). Estratégias utilizadas no combate a resistência bacteriana. . Quim Nova 29:, 844–855. [CrossRef]
    [Google Scholar]
  27. Souza A. B., de Souza M. G., Moreira M. A., Moreira M. R., Furtado N. A. J. C., Martins C. H. G., Bastos J. K., dos Santos R. A., Heleno V. C. G. et al. ( 2011;). Antimicrobial evaluation of diterpenes from Copaifera langsdorffii oleoresin against periodontal anaerobic bacteria. . Molecules 16:, 9611–9619. [CrossRef][PubMed]
    [Google Scholar]
  28. Steers E., Foltz E. L., Graves B. S.. ( 1959;). An inocula replicating apparatus for routine testing of bacterial susceptibility to antibiotics. . Antibiot Chemother 9:, 307–311.
    [Google Scholar]
  29. Veiga V. F. Jr. Rosas E. C., Carvalho M. V., Henriques M. G. M. O., Pinto A. C.. ( 2007;). Chemical composition and anti-inflammatory activity of copaiba oils from Copaifera cearensis Huber ex Ducke, Copaifera reticulata Ducke and Copaifera multijuga Hayne – a comparative study. . J Ethnopharmacol 112:, 248–254. [CrossRef][PubMed]
    [Google Scholar]
  30. Wagner H., Bladt S.. ( 2001;). Appendix A: spray reagents. . In Plant Drug Analysis: a Thin Layer Chromatography Atlas, p. 364. Edited by Wagner H., Bladt S... Berlin:: Springer;.
    [Google Scholar]
  31. Zhang Q., Lambert G., Liao D., Kim H., Robin K., Tung C.-K., Pourmand N., Austin R. H.. ( 2011;). Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. . Science 333:, 1764–1767. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.060046-0
Loading
/content/journal/jmm/10.1099/jmm.0.060046-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error