1887

Abstract

is the most frequent cause of severe gastroenteritis in the developed world. The major symptom of campylobacteriosis is inflammatory diarrhoea. The molecular mechanisms of this infection are poorly understood compared to those of less frequent disease-causing pathogens. In a previous study, we identified proteins that antibodies in human campylobacteriosis patients reacted with. One of the immunogenic proteins identified (Cj0917) displays homology to carbon starvation protein A (CstA) from , where this protein is involved in the starvation response and peptide uptake. In contrast to many bacteria, relies on amino acids and organic acids for energy, but it is highly likely that peptides are also utilized, although their mechanisms of uptake are unknown. In this study, Biolog phenotype microarrays have been used to show that a mutant has a reduced ability to utilize a number of di- and tri-peptides as nitrogen sources. This phenotype was restored through genetic complementation, suggesting CstA is a peptide uptake system in . Furthermore, the mutant also displayed reduced motility and reduced agglutination compared to WT bacteria; these phenotypes were also restored through complementation. Murine dendritic cells exposed to UV-killed bacteria showed a reduced IL-12 production, but the same IL-10 response when encountering compared to the WT strain. The greater Th1 stimulation elicited by the WT as compared to mutant cells indicates an altered antigenic presentation on the surface, and thus an altered recognition of the mutant. Thus, we conclude that CstA is important not only for peptide utilization, but also it may influence host–pathogen interactions.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.059345-0
2013-08-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/8/1135.html?itemId=/content/journal/jmm/10.1099/jmm.0.059345-0&mimeType=html&fmt=ahah

References

  1. Acheson D.. & Allos B. M.. ( 2001;). Campylobacter jejuni infections: update on emerging issues and trends. . Clin Infect Dis 32:, 1201–1206. [CrossRef][PubMed]
    [Google Scholar]
  2. Andersen-Nissen E., Smith K. D., Strobe K. L., Barrett S. L., Cookson B. T., Logan S. M., Aderem A.. ( 2005;). Evasion of Toll-like receptor 5 by flagellated bacteria. . Proc Natl Acad Sci U S A 102:, 9247–9252. [CrossRef][PubMed]
    [Google Scholar]
  3. Bax M., Kuijf M. L., Heikema A. P., van Rijs W., Bruijns S. C. M., García-Vallejo J. J., Crocker P. R., Jacobs B. C., van Vliet S. J., van Kooyk Y.. ( 2011;). Campylobacter jejuni lipooligosaccharides modulate dendritic cell-mediated T cell polarization in a sialic acid linkage-dependent manner. . Infect Immun 79:, 2681–2689. [CrossRef][PubMed]
    [Google Scholar]
  4. Blum P. H., Jovanovich S. B., McCann M. P., Schultz J. E., Lesley S. A., Burgess R. R., Matin A.. ( 1990;). Cloning and in vivo and in vitro regulation of cyclic AMP-dependent carbon starvation genes from Escherichia coli.. J Bacteriol 172:, 3813–3820.[PubMed]
    [Google Scholar]
  5. Bochner B. R.. ( 2009;). Global phenotypic characterization of bacteria. . FEMS Microbiol Rev 33:, 191–205. [CrossRef][PubMed]
    [Google Scholar]
  6. Coenye T., Vandamme P.. ( 2005;). Displacement of ϵ-proteobacterial core genes by horizontally transferred homologous genes. . Res Microbiol 156:, 738–747. [CrossRef][PubMed]
    [Google Scholar]
  7. Cohn M. T., Ingmer H., Mulholland F., Jørgensen K., Wells J. M., Brøndsted L.. ( 2007;). Contribution of conserved ATP-dependent proteases of Campylobacter jejuni to stress tolerance and virulence. . Appl Environ Microbiol 73:, 7803–7813. [CrossRef][PubMed]
    [Google Scholar]
  8. Coombes J. L., Powrie F.. ( 2008;). Dendritic cells in intestinal immune regulation. . Nat Rev Immunol 8:, 435–446. [CrossRef][PubMed]
    [Google Scholar]
  9. Cordwell S. J., Len A. C. L., Touma R. G., Scott N. E., Falconer L., Jones D., Connolly A., Crossett B., Djordjevic S. P.. ( 2008;). Identification of membrane-associated proteins from Campylobacter jejuni strains using complementary proteomics technologies. . Proteomics 8:, 122–139. [CrossRef][PubMed]
    [Google Scholar]
  10. Daley D. O., Rapp M., Granseth E., Melén K., Drew D., von Heijne G.. ( 2005;). Global topology analysis of the Escherichia coli inner membrane proteome. . Science 308:, 1321–1323. [CrossRef][PubMed]
    [Google Scholar]
  11. de Zoete M. R., Keestra A. M., Wagenaar J. A., van Putten J. P. M.. ( 2010;). Reconstitution of a functional Toll-like receptor 5 binding site in Campylobacter jejuni flagellin. . J Biol Chem 285:, 12149–12158. [CrossRef][PubMed]
    [Google Scholar]
  12. EFSA & ECDC ( 2012;). Trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2010. . EFSA J 10:, 25971–442.
    [Google Scholar]
  13. Ewing C. P., Andreishcheva E., Guerry P.. ( 2009;). Functional characterization of flagellin glycosylation in Campylobacter jejuni 81-176. . J Bacteriol 191:, 7086–7093. [CrossRef][PubMed]
    [Google Scholar]
  14. Fry B. N., Feng S., Chen Y. Y., Newell D. G., Coloe P. J., Korolik V.. ( 2000;). The galE gene of Campylobacter jejuni is involved in lipopolysaccharide synthesis and virulence. . Infect Immun 68:, 2594–2601. [CrossRef][PubMed]
    [Google Scholar]
  15. Golden N. J., Acheson D. W. K.. ( 2002;). Identification of motility and autoagglutination Campylobacter jejuni mutants by random transposon mutagenesis. . Infect Immun 70:, 1761–1771. [CrossRef][PubMed]
    [Google Scholar]
  16. Goossens H., Vlaes L., Galand I., Van den Borre C., Butzler J.-P.. ( 1989;). Semisolid blood-free selective-motility medium for the isolation of campylobacters from stool specimens. . J Clin Microbiol 27:, 1077–1080.[PubMed]
    [Google Scholar]
  17. Grant C. C. R., Konkel M. E., Cieplak W. Jr, Tompkins L. S.. ( 1993;). Role of flagella in adherence, internalization, and translocation of Campylobacter jejuni in nonpolarized and polarized epithelial cell cultures. . Infect Immun 61:, 1764–1771.[PubMed]
    [Google Scholar]
  18. Gripp E., Hlahla D., Didelot X., Kops F., Maurischat S., Tedin K., Alter T., Ellerbroek L., Schreiber K.. & other authors ( 2011;). Closely related Campylobacter jejuni strains from different sources reveal a generalist rather than a specialist lifestyle. . BMC Genomics 12:, 584. [CrossRef][PubMed]
    [Google Scholar]
  19. Groat R. G., Schultz J. E., Zychlinsky E., Bockman A., Matin A.. ( 1986;). Starvation proteins in Escherichia coli: kinetics of synthesis and role in starvation survival. . J Bacteriol 168:, 486–493.[PubMed]
    [Google Scholar]
  20. Guccione E., Leon-Kempis M. R., Pearson B. M., Hitchin E., Mulholland F., van Diemen P. M., Stevens M. P., Kelly D. J.. ( 2008;). Amino acid-dependent growth of Campylobacter jejuni: key roles for aspartase (AspA) under microaerobic and oxygen-limited conditions and identification of AspB (Cj0762), essential for growth on glutamate. . Mol Microbiol 69:, 77–93. [CrossRef][PubMed]
    [Google Scholar]
  21. Guerry P., Szymanski C. M., Prendergast M. M., Hickey T. E., Ewing C. P., Pattarini D. L., Moran A. P.. ( 2002;). Phase variation of Campylobacter jejuni 81-176 lipooligosaccharide affects ganglioside mimicry and invasiveness in vitro. . Infect Immun 70:, 787–793. [CrossRef][PubMed]
    [Google Scholar]
  22. Hofreuter D., Novik V., Galán J. E.. ( 2008;). Metabolic diversity in Campylobacter jejuni enhances specific tissue colonization. . Cell Host Microbe 4:, 425–433. [CrossRef][PubMed]
    [Google Scholar]
  23. Holt J. P., Grant A. J., Coward C., Maskell D. J., Quinlan J. J.. ( 2012;). Identification of Cj1051c as a major determinant for the restriction barrier of Campylobacter jejuni strain NCTC11168. . Appl Environ Microbiol 78:, 7841–7848. [CrossRef][PubMed]
    [Google Scholar]
  24. Howard S. L., Jagannathan A., Soo E. C., Hui J. P., Aubry A. J., Ahmed I., Karlyshev A., Kelly J. F., Jones M. A.. & other authors ( 2009;). Campylobacter jejuni glycosylation island important in cell charge, legionaminic acid biosynthesis, and colonization of chickens. . Infect Immun 77:, 2544–2556. [CrossRef][PubMed]
    [Google Scholar]
  25. Howlett R. M., Hughes B. M., Hitchcock A., Kelly D. J.. ( 2012;). Hydrogenase activity in the foodborne pathogen Campylobacter jejuni depends upon a novel ABC-type nickel transporter (NikZYXWV) and is SlyD-independent. . Microbiology 158:, 1645–1655. [CrossRef][PubMed]
    [Google Scholar]
  26. Karlyshev A. V., Wren B. W.. ( 2005;). Development and application of an insertional system for gene delivery and expression in Campylobacter jejuni.. Appl Environ Microbiol 71:, 4004–4013. [CrossRef][PubMed]
    [Google Scholar]
  27. Kuijf M. L., Samsom J. N., van Rijs W., Bax M., Huizinga R., Heikema A. P., van Doorn P. A., van Belkum A., van Kooyk Y.. & other authors ( 2010;). TLR4-mediated sensing of Campylobacter jejuni by dendritic cells is determined by sialylation. . J Immunol 185:, 748–755. [CrossRef][PubMed]
    [Google Scholar]
  28. Leon-Kempis M., Guccione E. J., Mulholland F., Williamson M. P., Kelly D. J.. ( 2006;). The Campylobacter jejuni PEB1a adhesin is an aspartate/glutamate-binding protein of an ABC transporter essential for microaerobic growth on dicarboxylic amino acids. . Mol Microbiol 60:, 1262–1275. [CrossRef][PubMed]
    [Google Scholar]
  29. Line J. E., Hiett K. L., Guard-Bouldin J., Seal B. S.. ( 2010;). Differential carbon source utilization by Campylobacter jejuni 11168 in response to growth temperature variation. . J Microbiol Methods 80:, 198–202. [CrossRef][PubMed]
    [Google Scholar]
  30. Moser M., Murphy K. M.. ( 2000;). Dendritic cell regulation of TH1-TH2 development. . Nat Immunol 1:, 199–205. [CrossRef][PubMed]
    [Google Scholar]
  31. Muraoka W. T., Zhang Q.. ( 2011;). Phenotypic and genotypic evidence for L-fucose utilization by Campylobacter jejuni.. J Bacteriol 193:, 1065–1075. [CrossRef][PubMed]
    [Google Scholar]
  32. Nielsen L. N., Luijkx T. A., Vegge C. S., Johnsen C. K., Nuijten P., Wren B. W., Ingmer H., Krogfelt K. A.. ( 2012;). Identification of immunogenic and virulence-associated Campylobacter jejuni proteins. . Clin Vaccine Immunol 19:, 113–119. [CrossRef][PubMed]
    [Google Scholar]
  33. Parkhill J., Wren B. W., Mungall K., Ketley J. M., Churcher C., Basham D., Chillingworth T., Davies R. M., Feltwell T.. & other authors ( 2000;). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. . Nature 403:, 665–668. [CrossRef][PubMed]
    [Google Scholar]
  34. Pei Z., Blaser M. J.. ( 1993;). PEB1, the major cell-binding factor of Campylobacter jejuni, is a homolog of the binding component in gram-negative nutrient transport systems. . J Biol Chem 268:, 18717–18725.[PubMed]
    [Google Scholar]
  35. Rathinam V. A., Appledorn D. M., Hoag K. A., Amalfitano A., Mansfield L. S.. ( 2009;). Campylobacter jejuni-induced activation of dendritic cells involves cooperative signaling through Toll-like receptor 4 (TLR4)-MyD88 and TLR4-TRIF axes. . Infect Immun 77:, 2499–2507. [CrossRef][PubMed]
    [Google Scholar]
  36. Rose A., Kay E., Wren B. W., Dallman M. J.. ( 2012;). The Campylobacter jejuni NCTC11168 capsule prevents excessive cytokine production by dendritic cells. . Med Microbiol Immunol (Berl) 201:, 137–144. [CrossRef][PubMed]
    [Google Scholar]
  37. Rutella S., Danese S., Leone G.. ( 2006;). Tolerogenic dendritic cells: cytokine modulation comes of age. . Blood 108:, 1435–1440. [CrossRef][PubMed]
    [Google Scholar]
  38. Schultz J. E., Matin A.. ( 1991;). Molecular and functional characterization of a carbon starvation gene of Escherichia coli. . J Mol Biol 218:, 129–140. [CrossRef][PubMed]
    [Google Scholar]
  39. Schultz J. E., Latter G. I., Matin A.. ( 1988;). Differential regulation by cyclic AMP of starvation protein synthesis in Escherichia coli. . J Bacteriol 170:, 3903–3909.[PubMed]
    [Google Scholar]
  40. Shaw F. L., Mulholland F., Le Gall G., Porcelli I., Hart D. J., Pearson B. M., van Vliet A. H. M.. ( 2012;). Selenium-dependent biogenesis of formate dehydrogenase in Campylobacter jejuni is controlled by the fdhTU accessory genes. . J Bacteriol 194:, 3814–3823. [CrossRef][PubMed]
    [Google Scholar]
  41. Stahl M., Friis L. M., Nothaft H., Liu X., Li J., Szymanski C. M., Stintzi A.. ( 2011;). L-fucose utilization provides Campylobacter jejuni with a competitive advantage. . Proc Natl Acad Sci U S A 108:, 7194–7199. [CrossRef][PubMed]
    [Google Scholar]
  42. Velayudhan J., Jones M. A., Barrow P. A., Kelly D. J.. ( 2004;). L-serine catabolism via an oxygen-labile l-serine dehydratase is essential for colonization of the avian gut by Campylobacter jejuni.. Infect Immun 72:, 260–268. [CrossRef][PubMed]
    [Google Scholar]
  43. Wagenaar J. A., Jacobs-Reitsma W., Hofshagen H., Newell D.. ( 2008;). Poultry colonisation with Campylobacter and its control at the primary production level. . In Campylobacter, , 3rd edn., pp. 667–678. Edited by Nachamkin I., Szymanski C. M., Blaser M. J... Washington:: American Society for Microbiology;.
    [Google Scholar]
  44. Wassenaar T. M., Blaser M. J.. ( 1999;). Pathophysiology of Campylobacter jejuni infections of humans. . Microbes Infect 1:, 1023–1033. [CrossRef][PubMed]
    [Google Scholar]
  45. Watson R. O., Galán J. E.. ( 2005;). Signal transduction in Campylobacter jejuni-induced cytokine production. . Cell Microbiol 7:, 655–665. [CrossRef][PubMed]
    [Google Scholar]
  46. Wright J. A., Grant A. J., Hurd D., Harrison M., Guccione E. J., Kelly D. J., Maskell D. J.. ( 2009;). Metabolite and transcriptome analysis of Campylobacter jejuni in vitro growth reveals a stationary-phase physiological switch. . Microbiology 155:, 80–94. [CrossRef][PubMed]
    [Google Scholar]
  47. Yang X., Ma Q., Wood T. K.. ( 2008;). The R1 conjugative plasmid increases Escherichia coli biofilm formation through an envelope stress response. . Appl Environ Microbiol 74:, 2690–2699. [CrossRef][PubMed]
    [Google Scholar]
  48. Yarovinsky F., Zhang D., Andersen J. F., Bannenberg G. L., Serhan C. N., Hayden M. S., Hieny S., Sutterwala F. S., Flavell R. A.. & other authors ( 2005;). TLR11 activation of dendritic cells by a protozoan profilin-like protein. . Science 308:, 1626–1629. [CrossRef][PubMed]
    [Google Scholar]
  49. Yen M.-R., Tseng Y.-H., Saier M. H. Jr. ( 2001;). Maize Yellow Stripe1, an iron-phytosiderophore uptake transporter, is a member of the oligopeptide transporter (OPT) family. . Microbiology 147:, 2881–2883.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.059345-0
Loading
/content/journal/jmm/10.1099/jmm.0.059345-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error