Use of a high-throughput screen to identify mutants unable to colonize the carrier host or cause disease in the acute model of infection Free

Abstract

The molecular basis for leptospirosis infection and colonization remains poorly understood, with no efficient methods available for screening libraries of mutants for attenuation. We analysed the attenuation of leptospiral transposon mutants using a high-throughput method by infecting animals with pooled sets of transposon mutants. A total of 95 mutants was analysed by this method in the hamster model of acute infection, and one mutant was identified as attenuated (M1233, mutant). All virulence factors identified in to date have been characterized in the acute model of infection, neglecting the carrier host. To address this, a BALB/c mouse colonization model was established. The mutant and two mutants defective in LPS synthesis were colonization deficient in the mouse model. By applying the high-throughput screening method, a further five colonization-deficient mutants were identified for the mouse model; these included two mutants in genes encoding proteins with a predicted role in iron uptake (LB191/HbpA and LB194). Two attenuated mutants had transposon insertions in either or (encoding proteins of unknown function). The final attenuated mutant had an unexpected deletion of genes at the point of transposon insertion. This is the first description of defined, colonization-deficient mutants in a carrier host for . These mutants were either not attenuated or only weakly attenuated in the hamster model of acute leptospirosis, thus illustrating that different factors that may be required in the carrier and acute models of leptospiral infection. High-throughput screening can reduce the number of animals used in virulence studies and increase the capacity to screen mutants for attenuation, thereby enhancing the likelihood of detecting unique virulence factors. A comparison of virulence factors required in the carrier and acute models of infection will help to unravel colonization and dissemination mechanisms of leptospirosis.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.058586-0
2013-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/10/1601.html?itemId=/content/journal/jmm/10.1099/jmm.0.058586-0&mimeType=html&fmt=ahah

References

  1. Adler B., de la Peña Moctezuma A. 2010; Leptospira and leptospirosis. Vet Microbiol 140:287–296 [View Article][PubMed]
    [Google Scholar]
  2. Adler B., Lo M., Seemann T., Murray G. L. 2011; Pathogenesis of leptospirosis: the influence of genomics. Vet Microbiol 153:73–81 [View Article][PubMed]
    [Google Scholar]
  3. Asuthkar S., Velineni S., Stadlmann J., Altmann F., Sritharan M. 2007; Expression and characterization of an iron-regulated hemin-binding protein, HbpA, from Leptospira interrogans serovar Lai. Infect Immun 75:4582–4591 [View Article][PubMed]
    [Google Scholar]
  4. Bourhy P., Louvel H., Saint Girons I., Picardeau M. 2005; Random insertional mutagenesis of Leptospira interrogans, the agent of leptospirosis, using a mariner transposon. J Bacteriol 187:3255–3258 [View Article][PubMed]
    [Google Scholar]
  5. Croda J., Figueira C. P., Wunder E. A. Jr, Santos C. S., Reis M. G., Ko A. I., Picardeau M. 2008; Targeted mutagenesis in pathogenic Leptospira species: disruption of the LigB gene does not affect virulence in animal models of leptospirosis. Infect Immun 76:5826–5833 [View Article][PubMed]
    [Google Scholar]
  6. Dang W., Hu Y. H., Sun L. 2011; HtpG is involved in the pathogenesis of Edwardsiella tarda.. Vet Microbiol 152:394–400 [View Article][PubMed]
    [Google Scholar]
  7. David M., Dzamba M., Lister D., Ilie L., Brudno M. 2011; SHRiMP2: sensitive yet practical SHort Read Mapping. Bioinformatics 27:1011–1012 [View Article][PubMed]
    [Google Scholar]
  8. Eshghi A., Lourdault K., Murray G. L., Bartpho T., Sermswan R. W., Picardeau M., Adler B., Snarr B., Zuerner R. L., Cameron C. E. 2012; Leptospira interrogans catalase is required for resistance to H2O2 and for virulence. Infect Immun 80:3892–3899 [View Article][PubMed]
    [Google Scholar]
  9. Faine S. 1962a; Factors affecting the development of the carrier state in leptospirosis. J Hyg (Lond) 60:427–434 [View Article][PubMed]
    [Google Scholar]
  10. Faine S. 1962b; The growth of Leptospira australis B in the kidneys of mice in the incipient experimental carrier state. J Hyg (Lond) 60:435–442 [View Article][PubMed]
    [Google Scholar]
  11. Fluckiger U., Ulrich M., Steinhuber A., Döring G., Mack D., Landmann R., Goerke C., Wolz C. 2005; Biofilm formation, icaADBC transcription, and polysaccharide intercellular adhesin synthesis by staphylococci in a device-related infection model. Infect Immun 73:1811–1819 [View Article][PubMed]
    [Google Scholar]
  12. Joshi S. M., Pandey A. K., Capite N., Fortune S. M., Rubin E. J., Sassetti C. M. 2006; Characterization of mycobacterial virulence genes through genetic interaction mapping. Proc Natl Acad Sci U S A 103:11760–11765 [View Article][PubMed]
    [Google Scholar]
  13. King A. M., Bartpho T., Sermswan R. W., Bulach D. M., Eshghi A., Picardeau M., Adler B., Murray G. L. 2013; Leptospiral outer membrane protein LipL41 is not essential for acute leptospirosis, but requires a small chaperone, Lep, for stable expression. Infect Immun 81:2768–2776 [View Article][PubMed]
    [Google Scholar]
  14. Lambert A., Picardeau M., Haake D. A., Sermswan R. W., Srikram A., Adler B., Murray G. L. 2012; FlaA proteins in Leptospira interrogans are essential for motility and virulence but are not required for formation of the flagellum sheath. Infect Immun 80:2019–2025 [View Article][PubMed]
    [Google Scholar]
  15. Liao S., Sun A., Ojcius D. M., Wu S., Zhao J., Yan J. 2009; Inactivation of the fliY gene encoding a flagellar motor switch protein attenuates mobility and virulence of Leptospira interrogans strain Lai. BMC Microbiol 9:253 [View Article][PubMed]
    [Google Scholar]
  16. Lo M., Murray G. L., Khoo C. A., Haake D. A., Zuerner R. L., Adler B. 2010; Transcriptional response of Leptospira interrogans to iron limitation and characterization of a PerR homolog. Infect Immun 78:4850–4859 [View Article][PubMed]
    [Google Scholar]
  17. Logsdon L. K., Mecsas J. 2003; Requirement of the Yersinia pseudotuberculosis effectors YopH and YopE in colonization and persistence in intestinal and lymph tissues. Infect Immun 71:4595–4607 [View Article][PubMed]
    [Google Scholar]
  18. Lourdault K., Cerqueira G. M., Wunder E. A. Jr, Picardeau M. 2011; Inactivation of clpB in the pathogen Leptospira interrogans reduces virulence and resistance to stress conditions. Infect Immun 79:3711–3717 [View Article][PubMed]
    [Google Scholar]
  19. Mérien F., Amouriaux P., Perolat P., Baranton G., Saint Girons I. 1992; Polymerase chain reaction for detection of Leptospira spp. in clinical samples. J Clin Microbiol 30:2219–2224[PubMed]
    [Google Scholar]
  20. Monahan A. M., Callanan J. J., Nally J. E. 2008; Proteomic analysis of Leptospira interrogans shed in urine of chronically infected hosts. Infect Immun 76:4952–4958 [View Article][PubMed]
    [Google Scholar]
  21. Murray G. L., Ellis K. M., Lo M., Adler B. 2008; Leptospira interrogans requires a functional heme oxygenase to scavenge iron from hemoglobin. Microbes Infect 10:791–797 [View Article][PubMed]
    [Google Scholar]
  22. Murray G. L., Morel V., Cerqueira G. M., Croda J., Srikram A., Henry R., Ko A. I., Dellagostin O. A., Bulach D. M. other authors 2009a; Genome-wide transposon mutagenesis in pathogenic Leptospira species. Infect Immun 77:810–816 [View Article][PubMed]
    [Google Scholar]
  23. Murray G. L., Srikram A., Henry R., Puapairoj A., Sermswan R. W., Adler B. 2009b; Leptospira interrogans requires heme oxygenase for disease pathogenesis. Microbes Infect 11:311–314 [View Article][PubMed]
    [Google Scholar]
  24. Murray G. L., Srikram A., Hoke D. E., Wunder E. A. Jr, Henry R., Lo M., Zhang K., Sermswan R. W., Ko A. I., Adler B. 2009c; Major surface protein LipL32 is not required for either acute or chronic infection with Leptospira interrogans.. Infect Immun 77:952–958 [View Article][PubMed]
    [Google Scholar]
  25. Murray G. L., Srikram A., Henry R., Hartskeerl R. A., Sermswan R. W., Adler B. 2010; Mutations affecting Leptospira interrogans lipopolysaccharide attenuate virulence. Mol Microbiol 78:701–709 [View Article][PubMed]
    [Google Scholar]
  26. Nally J. E., Chow E., Fishbein M. C., Blanco D. R., Lovett M. A. 2005; Changes in lipopolysaccharide O antigen distinguish acute versus chronic Leptospira interrogans infections. Infect Immun 73:3251–3260 [View Article][PubMed]
    [Google Scholar]
  27. Nally J. E., Monahan A. M., Miller I. S., Bonilla-Santiago R., Souda P., Whitelegge J. P. 2011; Comparative proteomic analysis of differentially expressed proteins in the urine of reservoir hosts of leptospirosis. PLoS ONE 6:e26046 [View Article][PubMed]
    [Google Scholar]
  28. Nascimento A. L., Ko A. I., Martins E. A., Monteiro-Vitorello C. B., Ho P. L., Haake D. A., Verjovski-Almeida S., Hartskeerl R. A., Marques M. V. other authors 2004; Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. J Bacteriol 186:2164–2172 [View Article][PubMed]
    [Google Scholar]
  29. Ren S. X., Fu G., Jiang X. G., Zeng R., Miao Y. G., Xu H., Zhang Y. X., Xiong H., Lu G. other authors 2003; Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature 422:888–893 [View Article][PubMed]
    [Google Scholar]
  30. Ristow P., Bourhy P., da Cruz McBride F. W., Figueira C. P., Huerre M., Ave P., Girons I. S., Ko A. I., Picardeau M. 2007; The OmpA-like protein Loa22 is essential for leptospiral virulence. PLoS Pathog 3:e97 [View Article][PubMed]
    [Google Scholar]
  31. Santos C. S., Macedo J. O., Bandeira M., Chagas-Junior A. D., McBride A. J., McBride F. W., Reis M. G., Athanazio D. A. 2010; Different outcomes of experimental leptospiral infection in mouse strains with distinct genotypes. J Med Microbiol 59:1101–1106 [View Article][PubMed]
    [Google Scholar]
  32. Staden R. 1979; A strategy of DNA sequencing employing computer programs. Nucleic Acids Res 6:2601–2610 [View Article][PubMed]
    [Google Scholar]
  33. Sweier D. G., Combs A., Shelburne C. E., Fenno J. C., Lopatin D. E. 2003; Construction and characterization of a Porphyromonas gingivalis htpG disruption mutant. FEMS Microbiol Lett 225:101–106 [View Article][PubMed]
    [Google Scholar]
  34. Terry K., Williams S. M., Connolly L., Ottemann K. M. 2005; Chemotaxis plays multiple roles during Helicobacter pylori animal infection. Infect Immun 73:803–811 [View Article][PubMed]
    [Google Scholar]
  35. Tucunduva de Faria M., Athanazio D. A., Gonçalves Ramos E. A., Silva E. F., Reis M. G., Ko A. I. 2007; Morphological alterations in the kidney of rats with natural and experimental Leptospira infection. J Comp Pathol 137:231–238 [View Article][PubMed]
    [Google Scholar]
  36. Vergara-Irigaray N., Chávarri-Martínez A., Rodríguez-Cuesta J., Miller J. F., Cotter P. A., Martínez de Tejada G. 2005; Evaluation of the role of the Bvg intermediate phase in Bordetella pertussis during experimental respiratory infection. Infect Immun 73:748–760 [View Article][PubMed]
    [Google Scholar]
  37. Zhang L., Zhang C., Ojcius D. M., Sun D., Zhao J., Lin X., Li L., Li L., Yan J. 2012; The mammalian cell entry (Mce) protein of pathogenic Leptospira species is responsible for RGD motif-dependent infection of cells and animals. Mol Microbiol 83:1006–1023 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.058586-0
Loading
/content/journal/jmm/10.1099/jmm.0.058586-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed