Cellular uptake of TcdA and truncated TcdA lacking the receptor binding domain Open Access

Abstract

The combined repetitive oligopeptides (CROPs) of toxins A (TcdA) and B (TcdB) induce clathrin-mediated endocytosis of the toxins. Inconsistently, CROP-truncated TcdA is also capable of entering host cells and displaying full cytotoxic properties although with less potency. Pre-incubation of cells with isolated CROPs, however, reconstitutes the reduced uptake of TcdA to the level of the full-length toxin. We believe that TcdA exhibits an additional binding motif beyond the C-terminally located CROP domain, which might interact with cellular receptor structures that are associated with alternative internalization pathways. This study therefore evaluated endocytosis routes of CROP-dependent cellular uptake for TcdA and CROP-independent cellular uptake for TcdA. Clathrin knockdown or inhibition with chlorpromazine affected subsequent internalization of TcdA and TcdA, although only to some extent, arguing for alternative, clathrin-independent endocytosis routes. Inhibition of dynamin, a GTPase essentially involved in clathrin-mediated endocytosis as well as in various clathrin-independent uptake mechanisms, affected uptake of TcdA to the same extent as clathrin inhibition. In contrast, uptake of TcdA was almost completely eliminated in dynamin-inhibited cells. Thus, clathrin-independent uptake of TcdA presumably depends on dynamin. These findings demonstrate that the toxins are endocytosed via complex pathways involving clathrin and dynamin, putatively enabling them to adapt to mechanisms of various cell types. With regard to the emergence of strains producing C-terminally truncated toxins, this study emphasizes the relevance of elucidating toxin uptake as a prerequisite for the development of toxin intervention strategies.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.057828-0
2013-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/9/1414.html?itemId=/content/journal/jmm/10.1099/jmm.0.057828-0&mimeType=html&fmt=ahah

References

  1. Amimoto K., Noro T., Oishi E., Shimizu M. 2007; A novel toxin homologous to large clostridial cytotoxins found in culture supernatant of Clostridium perfringens type C. Microbiology 153:1198–1206 [View Article][PubMed]
    [Google Scholar]
  2. Broeck D. V., Lagrou A. R., De Wolf M. J. 2007; Distinct role of clathrin-mediated endocytosis in the functional uptake of cholera toxin. Acta Biochim Pol 54:757–767[PubMed]
    [Google Scholar]
  3. Burger S., Tatge H., Hofmann F., Genth H., Just I., Gerhard R. 2003; Expression of recombinant Clostridium difficile toxin A using the Bacillus megaterium system. Biochem Biophys Res Commun 307:584–588 [View Article][PubMed]
    [Google Scholar]
  4. Dingle T., Wee S., Mulvey G. L., Greco A., Kitova E. N., Sun J., Lin S., Klassen J. S., Palcic M. M. other authors 2008; Functional properties of the carboxy-terminal host cell-binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile . Glycobiology 18:698–706 [View Article][PubMed]
    [Google Scholar]
  5. Doherty G. J., McMahon H. T. 2009; Mechanisms of endocytosis. Annu Rev Biochem 78:857–902 [View Article][PubMed]
    [Google Scholar]
  6. Frisch C., Gerhard R., Aktories K., Hofmann F., Just I. 2003; The complete receptor-binding domain of Clostridium difficile toxin A is required for endocytosis. Biochem Biophys Res Commun 300:706–711 [View Article][PubMed]
    [Google Scholar]
  7. Genisyuerek S., Papatheodorou P., Guttenberg G., Schubert R., Benz R., Aktories K. 2011; Structural determinants for membrane insertion, pore formation and translocation of Clostridium difficile toxin B. Mol Microbiol 79:1643–1654 [View Article][PubMed]
    [Google Scholar]
  8. Greco A., Ho J. G., Lin S. J., Palcic M. M., Rupnik M., Ng K. K. 2006; Carbohydrate recognition by Clostridium difficile toxin A. Nat Struct Mol Biol 13:460–461 [View Article][PubMed]
    [Google Scholar]
  9. Henley J. R., Krueger E. W., Oswald B. J., McNiven M. A. 1998; Dynamin-mediated internalization of caveolae. J Cell Biol 141:85–99 [View Article][PubMed]
    [Google Scholar]
  10. Hidalgo I. J., Raub T. J., Borchardt R. T. 1989; Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749[PubMed]
    [Google Scholar]
  11. Hinrichsen R. D., Schultz J. E. 1988; Paramecium: a model system for the study of excitable cells. Trends Neurosci 11:27–32 [View Article][PubMed]
    [Google Scholar]
  12. Huet C., Sahuquillo-Merino C., Coudrier E., Louvard D. 1987; Absorptive and mucus-secreting subclones isolated from a multipotent intestinal cell line (HT-29) provide new models for cell polarity and terminal differentiation. J Cell Biol 105:345–357 [View Article][PubMed]
    [Google Scholar]
  13. Hussack G., Arbabi-Ghahroudi M., Mackenzie C. R., Tanha J. 2012; Isolation and characterization of Clostridium difficile toxin-specific single-domain antibodies. Methods Mol Biol 911:211–239[PubMed]
    [Google Scholar]
  14. Jank T., Aktories K. 2008; Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends Microbiol 16:222–229 [View Article][PubMed]
    [Google Scholar]
  15. Keel M. K., Songer J. G. 2007; The distribution and density of Clostridium difficile toxin receptors on the intestinal mucosa of neonatal pigs. Vet Pathol 44:814–822 [View Article][PubMed]
    [Google Scholar]
  16. Macia E., Ehrlich M., Massol R., Boucrot E., Brunner C., Kirchhausen T. 2006; Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10:839–850 [View Article][PubMed]
    [Google Scholar]
  17. Mirre C., Monlauzeur L., Garcia M., Delgrossi M. H., Le Bivic A. 1996; Detergent-resistant membrane microdomains from Caco-2 cells do not contain caveolin. Am J Physiol 271:C887–C894[PubMed]
    [Google Scholar]
  18. Olling A., Goy S., Hoffmann F., Tatge H., Just I., Gerhard R. 2011; The repetitive oligopeptide sequences modulate cytopathic potency but are not crucial for cellular uptake of Clostridium difficile toxin A. PLoS ONE 6:e17623 [View Article][PubMed]
    [Google Scholar]
  19. Papatheodorou P., Zamboglou C., Genisyuerek S., Guttenberg G., Aktories K. 2010; Clostridial glucosylating toxins enter cells via clathrin-mediated endocytosis. PLoS ONE 5:e10673 [View Article][PubMed]
    [Google Scholar]
  20. Pruitt R. N., Lacy D. B. 2012; Toward a structural understanding of Clostridium difficile toxins A and B. Front Cell Infect Microbiol 2:28 [View Article][PubMed]
    [Google Scholar]
  21. Rupnik M. 2008; Heterogeneity of large clostridial toxins: importance of Clostridium difficile toxinotypes. FEMS Microbiol Rev 32:541–555 [View Article][PubMed]
    [Google Scholar]
  22. Stubbe H., Berdoz J., Kraehenbuhl J.-P., Corthésy B. 2000; Polymeric IgA is superior to monomeric IgA and IgG carrying the same variable domain in preventing Clostridium difficile toxin A damaging of T84 monolayers. J Immunol 164:1952–1960[PubMed] [CrossRef]
    [Google Scholar]
  23. van den Berg R. J., Claas E. C., Oyib D. H., Klaassen C. H. W., Dijkshoorn L., Brazier J. S., Kuijper E. J. 2004; Characterization of toxin A-negative, toxin B-positive Clostridium difficile isolates from outbreaks in different countries by amplified fragment length polymorphism and PCR ribotyping. J Clin Microbiol 42:1035–1041 [View Article][PubMed]
    [Google Scholar]
  24. von Eichel-Streiber C., Laufenberg-Feldmann R., Sartingen S., Schulze J., Sauerborn M. 1992; Comparative sequence analysis of the Clostridium difficile toxins A and B. Mol Gen Genet 233:260–268 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.057828-0
Loading
/content/journal/jmm/10.1099/jmm.0.057828-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed