1887

Abstract

Cervical cancer is a human papilloma virus (HPV)-related cancer, but most HPV infections are transient or intermittent and resolve spontaneously. Thus, other factors, such as cervical microflora, which are dominated by lactobacilli, must be involved in invasive cervical carcinoma development after HPV infection. Previous studies have demonstrated that lactobacilli have antitumour effects, and it is possible that vaginal lactobacilli prevent cervical cancer. Here we examined the proliferative and apoptotic responses of normal and tumour cervical cells to common vaginal lactobacilli components by investigating human normal fibroblast-like cervical (normal cervical) and HeLa (cervical tumour) cell responses to and . The effects of different lactobacilli components, such as culture supernatants, cytoplasmic extracts, cell-wall extracts and live cells, were determined by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, trypan blue staining, lactate dehydrogenase assay and colorimetric caspase-3 activity assay. Changes in caspase-3 and human chorionic gonadotropin β (hCGβ) expression were analysed by quantitative RT-PCR. Tumour cell growth inhibition by culture supernatants was higher than that by pH- and lactate-adjusted controls. However, the effects of the supernatants on normal cells were similar to those of lactate-adjusted controls. Apoptosis was inhibited by supernatants, which was consistent with higher hCGβ expression since hCG inhibits apoptosis. Our study demonstrated that common vaginal lactobacilli exert cytotoxic effects on cervical tumour cells, but not on normal cells, and that this cytotoxicity is independent of pH and lactate. Our results encourage further studies on the interaction between lactobacilli and cervical cells, and administration of common vaginal lactobacilli as probiotics.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.057521-0
2013-07-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/7/1065.html?itemId=/content/journal/jmm/10.1099/jmm.0.057521-0&mimeType=html&fmt=ahah

References

  1. Apgar B. S., Zoschnick L., Wright T. C. Jr. ( 2003;). The 2001 Bethesda System terminology. . Am Fam Physician 68:, 1992–1998.[PubMed]
    [Google Scholar]
  2. Boccardo E., Lepique A. P., Villa L. L.. ( 2010;). The role of inflammation in HPV carcinogenesis. . Carcinogenesis 31:, 1905–1912. [CrossRef][PubMed]
    [Google Scholar]
  3. Bosch F. X., Lorincz A., Muñoz N., Meijer C. J. L. M., Shah K. V.. ( 2002;). The causal relation between human papillomavirus and cervical cancer. . J Clin Pathol 55:, 244–265. [CrossRef][PubMed]
    [Google Scholar]
  4. Cheung T.-H., Chung T. K.-H., Lo K. W.-K., Yu M.-Y., Krajewski S., Reed J. C., Wong Y.-F.. ( 2002;). Apotosis-related proteins in cervical intraepithelial neoplasia and squamous cell carcinoma of the cervix. . Gynecol Oncol 86:, 14–18. [CrossRef][PubMed]
    [Google Scholar]
  5. Choi S. S., Kim Y., Han K. S., You S., Oh S., Kim S. H.. ( 2006;). Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. . Lett Appl Microbiol 42:, 452–458. [CrossRef][PubMed]
    [Google Scholar]
  6. Damia G., Broggini M.. ( 2004;). Improving the selectivity of cancer treatments by interfering with cell response pathways. . Eur J Cancer 40:, 2550–2559. [CrossRef][PubMed]
    [Google Scholar]
  7. Del Canto F., Sierralta W., Kohen P., Muñoz A., Strauss J. F. III, Devoto L.. ( 2007;). Features of natural and gonadotropin-releasing hormone antagonist-induced corpus luteum regression and effects of in vivo human chorionic gonadotropin. . J Clin Endocrinol Metab 92:, 4436–4443. [CrossRef][PubMed]
    [Google Scholar]
  8. Denizot F., Lang R.. ( 1986;). Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. . J Immunol Methods 89:, 271–277. [CrossRef][PubMed]
    [Google Scholar]
  9. Fujimura S., Watanabe A., Kimura K., Kaji M.. ( 2012;). Probiotic mechanism of Lactobacillus gasseri OLL2716 strain against Helicobacter pylori.. J Clin Microbiol 50:, 1134–1136. [CrossRef][PubMed]
    [Google Scholar]
  10. Gharib S. D., Wierman M. E., Shupnik M. A., Chin W. W.. ( 1990;). Molecular biology of the pituitary gonadotropins. . Endocr Rev 11:, 177–199. [CrossRef][PubMed]
    [Google Scholar]
  11. Giovangrandi Y., Parfait B., Asheuer M., Olivi M., Lidereau R., Vidaud M., Bieche I.. ( 2001;). Analysis of the human CGB/LHB gene cluster in breast tumors by real-time quantitative RT-PCR assays. . Cancer Lett 168:, 93–100. [CrossRef][PubMed]
    [Google Scholar]
  12. Hemarajata P., Versalovic J.. ( 2013;). Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. . Therap Adv Gastroenterol 6:, 39–51. [CrossRef][PubMed]
    [Google Scholar]
  13. Iles R. K.. ( 2007;). Ectopic hCGbeta expression by epithelial cancer: malignant behaviour, metastasis and inhibition of tumor cell apoptosis. . Mol Cell Endocrinol 260-262:, 264–270. [CrossRef][PubMed]
    [Google Scholar]
  14. Isolauri E.. ( 2001;). Probiotics in human disease. . Am J Clin Nutr 73:, 1146–.[PubMed]
    [Google Scholar]
  15. Iyer C., Kosters A., Sethi G., Kunnumakkara A. B., Aggarwal B. B., Versalovic J.. ( 2008;). Probiotic Lactobacillus reuteri promotes TNF-induced apoptosis in human myeloid leukemia-derived cells by modulation of NF-kappaB and MAPK signalling. . Cell Microbiol 10:, 1442–1452. [CrossRef][PubMed]
    [Google Scholar]
  16. Jankowska A., Andrusiewicz M., Grabowski J., Nowak-Markwitz E., Warchol J. B.. ( 2008a;). Coexpression of human chorionic gonadotropin beta subunit and its receptor in nontrophoblastic gynecological cancer. . Int J Gynecol Cancer 18:, 1102–1107. [CrossRef][PubMed]
    [Google Scholar]
  17. Jankowska A., Gunderson S. I., Andrusiewicz M., Burczynska B., Szczerba A., Jarmolowski A., Nowak-Markwitz E., Warchol J. B.. ( 2008b;). Reduction of human chorionic gonadotropin beta subunit expression by modified U1 snRNA caused apoptosis in cervical cancer cells. . Mol Cancer 7:, 26. [CrossRef][PubMed]
    [Google Scholar]
  18. Johnson-Henry K. C., Hagen K. E., Gordonpour M., Tompkins T. A., Sherman P. M.. ( 2007;). Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157:H7 adhesion to epithelial cells. . Cell Microbiol 9:, 356–367. [CrossRef][PubMed]
    [Google Scholar]
  19. Khailova L., Mount Patrick S. K., Arganbright K. M., Halpern M. D., Kinouchi T., Dvorak B.. ( 2010;). Bifidobacterium bifidum reduces apoptosis in the intestinal epithelium in necrotizing enterocolitis. . Am J Physiol Gastrointest Liver Physiol 299:, G1118–G1127. [CrossRef][PubMed]
    [Google Scholar]
  20. Kim Y., Oh S., Kim S. H.. ( 2009;). Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7. . Biochem Biophys Res Commun 379:, 324–329. [CrossRef][PubMed]
    [Google Scholar]
  21. Kim Y., Oh S., Yun H. S., Kim S. H.. ( 2010;). Cell-bound exopolysaccharide from probiotic bacteria induces autophagic cell death of tumour cells. . Lett Appl Microbiol 51:, 123–130.[PubMed]
    [Google Scholar]
  22. Lan A., Lagadic-Gossmann D., Lemaire C., Brenner C., Jan G.. ( 2007;). Acidic extracellular pH shifts colorectal cancer cell death from apoptosis to necrosis upon exposure to propionate and acetate, major end-products of the human probiotic propionibacteria. . Apoptosis 12:, 573–591. [CrossRef][PubMed]
    [Google Scholar]
  23. Li P., Yin Y., Yu Q., Yang Q.. ( 2011;). Lactobacillus acidophilus S-layer protein-mediated inhibition of Salmonella-induced apoptosis in Caco-2 cells. . Biochem Biophys Res Commun 409:, 142–147. [CrossRef][PubMed]
    [Google Scholar]
  24. Li J., McCormick J., Bocking A., Reid G.. ( 2012;). Importance of vaginal microbes in reproductive health. . Reprod Sci 19:, 235–242. [CrossRef][PubMed]
    [Google Scholar]
  25. Liu J. J., Reid G., Jiang Y., Turner M. S., Tsai C.-C.. ( 2007;). Activity of HIV entry and fusion inhibitors expressed by the human vaginal colonizing probiotic Lactobacillus reuteri RC-14. . Cell Microbiol 9:, 120–130. [CrossRef][PubMed]
    [Google Scholar]
  26. Martín R., Soberón N., Vázquez F., Suárez J. E.. ( 2008;). La microbiota vaginal: composición, papel protector, patología asociada y perspectivas terapéuticas. . Enferm Infecc Microbiol Clin 26:, 160–167. [CrossRef][PubMed]
    [Google Scholar]
  27. Nam K. H., Kim Y. T., Kim S. R., Kim S. W., Kim J. W., Lee M. K., Nam E. J., Jung Y. W.. ( 2009;). Association between bacterial vaginosis and cervical intraepithelial neoplasia. . J Gynecol Oncol 20:, 39–43. [CrossRef][PubMed]
    [Google Scholar]
  28. Ngugi B. M., Hemmerling A., Bukusi E. A., Kikuvi G., Gikunju J., Shiboski S., Fredricks D. N., Cohen C. R.. ( 2011;). Effects of bacterial vaginosis-associated bacteria and sexual intercourse on vaginal colonization with the probiotic Lactobacillus crispatus CTV-05. . Sex Transm Dis 38:, 1020–1027. [CrossRef][PubMed]
    [Google Scholar]
  29. Orlando A., Messa C., Linsalata M., Cavallini A., Russo F.. ( 2009;). Effects of Lactobacillus rhamnosus GG on proliferation and polyamine metabolism in HGC-27 human gastric and DLD-1 colonic cancer cell lines. . Immunopharmacol Immunotoxicol 31:, 108–116. [CrossRef][PubMed]
    [Google Scholar]
  30. Orlando A., Refolo M. G., Messa C., Amati L., Lavermicocca P., Guerra V., Russo F.. ( 2012;). Antiproliferative and proapoptotic effects of viable or heat-killed Lactobacillus paracasei IMPC2.1 and Lactobacillus rhamnosus GG in HGC-27 gastric and DLD-1 colon cell lines. . Nutr Cancer 64:, 1103–1111. [CrossRef][PubMed]
    [Google Scholar]
  31. Peña J. A., Versalovic J.. ( 2003;). Lactobacillus rhamnosus GG decreases TNF-alpha production in lipopolysaccharide-activated murine macrophages by a contact-independent mechanism. . Cell Microbiol 5:, 277–285. [CrossRef][PubMed]
    [Google Scholar]
  32. Pendharkar S., Magopane T., Larsson P.-G., de Bruyn G., Gray G. E., Hammarström L., Marcotte H.. ( 2013;). Identification and characterisation of vaginal lactobacilli from South African women. . BMC Infect Dis 13:, 43. [CrossRef][PubMed]
    [Google Scholar]
  33. Peng H., Lv H., Wang Y., Liu Y. H., Li C. Y., Meng L., Chen F., Bao J. K.. ( 2009;). Clematis montana lectin, a novel mannose-binding lectin from traditional Chinese medicine with antiviral and apoptosis-inducing activities. . Peptides 30:, 1805–1815. [CrossRef][PubMed]
    [Google Scholar]
  34. Ravel J., Gajer P., Abdo Z., Schneider G. M., Koenig S. S. K., McCulle S. L., Karlebach S., Gorle R., Russell J. et al. ( 2011;). Vaginal microbiome of reproductive-age women. . Proc Natl Acad Sci U S A 108: (Suppl 1), 4680–4687. [CrossRef][PubMed]
    [Google Scholar]
  35. Russo F., Orlando A., Linsalata M., Cavallini A., Messa C.. ( 2007;). Effects of Lactobacillus rhamnosus GG on the cell growth and polyamine metabolism in HGC-27 human gastric cancer cells. . Nutr Cancer 59:, 106–114. [CrossRef][PubMed]
    [Google Scholar]
  36. Sankaranarayanan R., Ferlay J.. ( 2006;). Worldwide burden of gynaecological cancer: the size of the problem. . Best Pract Res Clin Obstet Gynaecol 20:, 207–225. [CrossRef][PubMed]
    [Google Scholar]
  37. Sekine K., Ohta J., Onishi M., Tatsuki T., Shimokawa Y., Toida T., Kawashima T., Hashimoto Y.. ( 1995;). Analysis of antitumor properties of effector cells stimulated with a cell wall preparation (WPG) of Bifidobacterium infantis.. Biol Pharm Bull 18:, 148–153. [CrossRef][PubMed]
    [Google Scholar]
  38. Sharma S., Singh R. L., Kakkar P.. ( 2011;). Modulation of Bax/Bcl-2 and caspases by probiotics during acetaminophen induced apoptosis in primary hepatocytes. . Food Chem Toxicol 49:, 770–779. [CrossRef][PubMed]
    [Google Scholar]
  39. Spurbeck R. R., Arvidson C. G.. ( 2011;). Lactobacilli at the front line of defense against vaginally acquired infections. . Future Microbiol 6:, 567–582. [CrossRef][PubMed]
    [Google Scholar]
  40. Tamrakar R., Yamada T., Furuta I., Cho K., Morikawa M., Yamada H., Sakuragi N., Minakami H.. ( 2007;). Association between Lactobacillus species and bacterial vaginosis-related bacteria, and bacterial vaginosis scores in pregnant Japanese women. . BMC Infect Dis 7:, 128. [CrossRef][PubMed]
    [Google Scholar]
  41. Vásquez A., Jakobsson T., Ahrné S., Forsum U., Molin G.. ( 2002;). Vaginal lactobacillus flora of healthy Swedish women. . J Clin Microbiol 40:, 2746–2749. [CrossRef][PubMed]
    [Google Scholar]
  42. Xiao B. B., Liao Q. P.. ( 2012;). [Analysis of diversity of vaginal microbiota in healthy Chinese women by using DNA-fingerprinting]. . Beijing Da Xue Xue Bao 44:, 281–287.[PubMed]
    [Google Scholar]
  43. Yan F., Polk D. B.. ( 2002;). Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. . J Biol Chem 277:, 50959–50965. [CrossRef][PubMed]
    [Google Scholar]
  44. Zozaya-Hinchliffe M., Lillis R., Martin D. H., Ferris M. J.. ( 2010;). Quantitative PCR assessments of bacterial species in women with and without bacterial vaginosis. . J Clin Microbiol 48:, 1812–1819. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.057521-0
Loading
/content/journal/jmm/10.1099/jmm.0.057521-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error