1887

Abstract

is an important food-borne bacterial pathogen and listeriosis can result in abortions in pregnant women. The bacterium can colonize food-processing environments, where specific molecular subtypes can persist for years. The purpose of this study was to determine the virulence potential of a group of food-processing persistent strains encoding a premature stop codon in (encoding internalin A) by using two orally dosed models, pregnant mice and pregnant guinea pigs. A food-processing persistent strain of invaded placentas ( = 58; 10 % positive) and fetuses (3 % positive) of pregnant mice ( = 9 animals per strain), similar to a genetically manipulated murinized strain, EGD-e InlA ( = 61; 3 and 2 %, respectively). In pregnant guinea pigs ( = 9 animals per bacterial strain), a maternofetal strain (from a human fetal clinical fatal case) was isolated from 34 % of placenta samples ( = 50), whereas both food-processing persistent strains were found in 5 % of placenta samples ( = 36 or 37). One of the food-processing persistent strains, N53-1, was found in up to 8 % of guinea pig fetal liver and brain samples, whereas the maternofetal control was found in 6 % of fetal tissue samples. As the food-processing persistent strains carry a premature stop codon in but are invasive in orally dosed pregnant mice and guinea pigs, we hypothesize that listerial crossing of the placental barrier can occur by a mechanism that is independent of an interaction between E-cadherin and InlA.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.057505-0
2013-12-01
2021-03-02
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/12/1799.html?itemId=/content/journal/jmm/10.1099/jmm.0.057505-0&mimeType=html&fmt=ahah

References

  1. Autio T., Hielm S., Miettinen M. K., Sjöberg A. M., Aarnisalo K., Björkroth J., Mattila-Sandholm T., Korkeala H. 1999; Sources of Listeria monocytogenes contamination in a cold-smoked rainbow trout processing plant detected by pulsed-field gel electrophoresis typing. Appl Environ Microbiol 65:150–155[PubMed]
    [Google Scholar]
  2. Bakardjiev A. I., Stacy B. A., Fisher S. J., Portnoy D. A. 2004; Listeriosis in the pregnant guinea pig: a model of vertical transmission. Infect Immun 72:489–497 [CrossRef][PubMed]
    [Google Scholar]
  3. Bakardjiev A. I., Stacy B. A., Portnoy D. A. 2005; Growth of Listeria monocytogenes in the guinea pig placenta and role of cell-to-cell spread in fetal infection. J Infect Dis 191:1889–1897 [CrossRef][PubMed]
    [Google Scholar]
  4. Chambel L., Sol M., Fernandes I., Barbosa M., Zilhão I., Barata B., Jordan S., Perni S., Shama G. other authors 2007; Occurrence and persistence of Listeria spp. in the environment of ewe and cow’s milk cheese dairies in Portugal unveiled by an integrated analysis of identification, typing and spatial-temporal mapping along production cycle. Int J Food Microbiol 116:52–63 [CrossRef][PubMed]
    [Google Scholar]
  5. Disson O., Grayo S., Huillet E., Nikitas G., Langa-Vives F., Dussurget O., Ragon M., Le Monnier A., Babinet C. other authors 2008; Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature 455:1114–1118 [CrossRef][PubMed]
    [Google Scholar]
  6. Dramsi S., Biswas I., Maguin E., Braun L., Mastroeni P., Cossart P. 1995; Entry of Listeria monocytogenes into hepatocytes requires expression of inIB, a surface protein of the internalin multigene family. Mol Microbiol 16:251–261 [CrossRef][PubMed]
    [Google Scholar]
  7. Drevets D. A., Schawang J. E., Dillon M. J., Lerner M. R., Bronze M. S., Brackett D. J. 2008; Innate responses to systemic infection by intracellular bacteria trigger recruitment of Ly-6Chigh monocytes to the brain. J Immunol 181:529–536[PubMed] [CrossRef]
    [Google Scholar]
  8. Gaillard J. L., Berche P., Frehel C., Gouin E., Cossart P. 1991; Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from Gram-positive cocci. Cell 65:1127–1141 [CrossRef][PubMed]
    [Google Scholar]
  9. Gillespie I. A., McLauchlin J., Grant K. A., Little C. L., Mithani V., Penman C., Lane C., Regan M. 2006; Changing pattern of human listeriosis, England and Wales, 2001–2004. Emerg Infect Dis 12:1361–1366 [CrossRef][PubMed]
    [Google Scholar]
  10. Hansen C. H., Vogel B. F., Gram L. 2006; Prevalence and survival of Listeria monocytogenes in Danish aquatic and fish-processing environments. J Food Prot 69:2113–2122[PubMed]
    [Google Scholar]
  11. Hildebrand F., Nguyen T. L. A., Brinkman B., Yunta R. G., Cauwe B., Vandenabeele P., Liston A., Raes J. 2013; Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol 14:R4 [CrossRef][PubMed]
    [Google Scholar]
  12. Hoffman A. D., Gall K. L., Norton D. M., Wiedmann M. 2003; Listeria monocytogenes contamination patterns for the smoked fish processing environment and for raw fish. J Food Prot 66:52–60[PubMed]
    [Google Scholar]
  13. Holch A., Gottlieb C. T., Larsen M. H., Ingmer H., Gram L. 2010; Poor invasion of trophoblastic cells but normal plaque formation in fibroblastic cells despite actA deletion in a group of Listeria monocytogenes strains persisting in some food processing environments. Appl Environ Microbiol 76:3391–3397 [CrossRef][PubMed]
    [Google Scholar]
  14. Holch A., Webb K., Lukjancenko O., Ussery D., Rosenthal B. M., Gram L. 2013; Genome sequencing identifies two nearly unchanged strains of persistent Listeria monocytogenes isolated at two different fish processing plants sampled 6 years apart. Appl Environ Microbiol 79:2944–2951 [CrossRef][PubMed]
    [Google Scholar]
  15. Hufeldt M. R., Nielsen D. S., Vogensen F. K., Midtvedt T., Hansen A. K. 2010; Variation in the gut microbiota of laboratory mice is related to both genetic and environmental factors. Comp Med 60:336–347[PubMed]
    [Google Scholar]
  16. Jacquet C., Doumith M., Gordon J. I., Martin P. M. V., Cossart P., Lecuit M. 2004; A molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes . J Infect Dis 189:2094–2100 [CrossRef][PubMed]
    [Google Scholar]
  17. Jensen A., Larsen M. H., Ingmer H., Vogel B. F., Gram L. 2007; Sodium chloride enhances adherence and aggregation and strain variation influences invasiveness of Listeria monocytogenes strains. J Food Prot 70:592–599[PubMed]
    [Google Scholar]
  18. Jensen A., Thomsen L. E., Jørgensen R. L., Larsen M. H., Roldgaard B. B., Christensen B. B., Vogel B. F., Gram L., Ingmer H. 2008a; Processing plant persistent strains of Listeria monocytogenes appear to have a lower virulence potential than clinical strains in selected virulence models. Int J Food Microbiol 123:254–261 [CrossRef][PubMed]
    [Google Scholar]
  19. Jensen A., Williams D., Irvin E. A., Gram L., Smith M. A. 2008b; A processing plant persistent strain of Listeria monocytogenes crosses the fetoplacental barrier in a pregnant guinea pig model. J Food Prot 71:1028–1034[PubMed]
    [Google Scholar]
  20. Kastbjerg V. G., Gram L. 2009; Model systems allowing quantification of sensitivity to disinfectants and comparison of disinfectant susceptibility of persistent and presumed nonpersistent Listeria monocytogenes . J Appl Microbiol 106:1667–1681 [CrossRef][PubMed]
    [Google Scholar]
  21. Keto-Timonen R., Tolvanen R., Lundén J., Korkeala H. 2007; An 8-year surveillance of the diversity and persistence of Listeria monocytogenes in a chilled food processing plant analyzed by amplified fragment length polymorphism. J Food Prot 70:1866–1873[PubMed]
    [Google Scholar]
  22. Khelef N., Lecuit M., Bierne H., Cossart P. 2006; Species specificity of the Listeria monocytogenes InlB protein. Cell Microbiol 8:457–470 [CrossRef][PubMed]
    [Google Scholar]
  23. Lamont R. F., Sobel J., Mazaki-Tovi S., Kusanovic J. P., Vaisbuch E., Kim S. K., Uldbjerg N., Romero R. 2011; Listeriosis in human pregnancy: a systematic review. J Perinat Med 39:227–236 [CrossRef][PubMed]
    [Google Scholar]
  24. Le Monnier A., Join-Lambert O. F., Jaubert F., Berche P., Kayal S. 2006; Invasion of the placenta during murine listeriosis. Infect Immun 74:663–672 [CrossRef][PubMed]
    [Google Scholar]
  25. Le Monnier A., Autret N., Join-Lambert O. F., Jaubert F., Charbit A., Berche P., Kayal S. 2007; ActA is required for crossing of the fetoplacental barrier by Listeria monocytogenes . Infect Immun 75:950–957 [CrossRef][PubMed]
    [Google Scholar]
  26. Lecuit M., Ohayon H., Braun L., Mengaud J., Cossart P. 1997; Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect Immun 65:5309–5319[PubMed]
    [Google Scholar]
  27. Lecuit M., Dramsi S., Gottardi C., Fedor-Chaiken M., Gumbiner B., Cossart P. 1999; A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes . EMBO J 18:3956–3963 [CrossRef][PubMed]
    [Google Scholar]
  28. Lecuit M., Vandormael-Pournin S., Lefort J., Huerre M., Gounon P., Dupuy C., Babinet C., Cossart P. 2001; A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292:1722–1725 [CrossRef][PubMed]
    [Google Scholar]
  29. Lecuit M., Nelson D. M., Smith S. D., Khun H., Huerre M., Vacher-Lavenu M. C., Gordon J. I., Cossart P. 2004; Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: role of internalin interaction with trophoblast E-cadherin. Proc Natl Acad Sci U S A 101:6152–6157 [CrossRef][PubMed]
    [Google Scholar]
  30. Licht T. R., Ebersbach T., Frokiaer H. 2012; Prebiotics for prevention of gut infections. Trends Food Sci Technol 23:70–82 [CrossRef]
    [Google Scholar]
  31. MacGowan A. P., Bowker K., McLauchlin J., Bennett P. M., Reeves D. S. 1994; The occurrence and seasonal changes in the isolation of Listeria spp. in shop bought food stuffs, human faeces, sewage and soil from urban sources. Int J Food Microbiol 21:325–334 [CrossRef][PubMed]
    [Google Scholar]
  32. Mengaud J., Ohayon H., Gounon P., Mege, R.M., Cossart P. 1996; E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84:923–932 [CrossRef][PubMed]
    [Google Scholar]
  33. Monk I. R., Casey P. G., Hill C., Gahan C. G. M. 2010; Directed evolution and targeted mutagenesis to murinize Listeria monocytogenes internalin A for enhanced infectivity in the murine oral infection model. BMC Microbiol 10:318 [CrossRef][PubMed]
    [Google Scholar]
  34. Nightingale K. K., Ivy R. A., Ho A. J., Fortes E. D., Njaa B. L., Peters R. M., Wiedmann M. 2008; inlA premature stop codons are common among Listeria monocytogenes isolates from foods and yield virulence-attenuated strains that confer protection against fully virulent strains. Appl Environ Microbiol 74:6570–6583 [CrossRef][PubMed]
    [Google Scholar]
  35. Norton D. M., Scarlett J. M., Horton K., Sue D., Thimothe J., Boor K. J., Wiedmann M. 2001; Characterization and pathogenic potential of Listeria monocytogenes isolates from the smoked fish industry. Appl Environ Microbiol 67:646–653 [CrossRef][PubMed]
    [Google Scholar]
  36. Petersen A., Bergström A., Andersen J. B., Hansen M., Lahtinen S. J., Wilcks A., Licht T. R. 2010; Analysis of the intestinal microbiota of oligosaccharide fed mice exhibiting reduced resistance to Salmonella infection. Benef Microbes 1:271–281 [CrossRef][PubMed]
    [Google Scholar]
  37. Robbins J. R., Skrzypczynska K. M., Zeldovich V. B., Kapidzic M., Bakardjiev A. I. 2010; Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes . PLoS Pathog 6:e1000732 [CrossRef][PubMed]
    [Google Scholar]
  38. Roldgaard B. B., Andersen J. B., Hansen T. B., Christensen B. B., Licht T. R. 2009; Comparison of three Listeria monocytogenes strains in a guinea-pig model simulating food-borne exposure. FEMS Microbiol Lett 291:88–94 [CrossRef][PubMed]
    [Google Scholar]
  39. Rørvik L. M., Caugant D. A., Yndestad M. 1995; Contamination pattern of Listeria monocytogenes and other Listeria spp. in a salmon slaughterhouse and smoked salmon processing plant. Int J Food Microbiol 25:19–27 [CrossRef][PubMed]
    [Google Scholar]
  40. Smith B., Kemp M., Ethelberg S., Schiellerup P., Bruun B. G., Gerner-Smidt P., Christensen J. J. 2009; Listeria monocytogenes: maternal–foetal infections in Denmark 1994-2005. Scand J Infect Dis 41:21–25 [CrossRef][PubMed]
    [Google Scholar]
  41. Van Stelten A., Simpson J. M., Chen Y., Scott V. N., Whiting R. C., Ross W. H., Nightingale K. K. 2011; Significant shift in median guinea pig infectious dose shown by an outbreak-associated Listeria monocytogenes epidemic clone strain and a strain carrying a premature stop codon mutation in inlA . Appl Environ Microbiol 77:2479–2487 [CrossRef][PubMed]
    [Google Scholar]
  42. Vázquez-Boland J. A., Kuhn M., Berche P., Chakraborty T., Domínguez-Bernal G., Goebel W., González-Zorn B., Wehland J., Kreft J. 2001; Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640 [CrossRef][PubMed]
    [Google Scholar]
  43. Vogel B. F., Jørgensen L. V., Ojeniyi B., Huss H. H., Gram L. 2001; Diversity of Listeria monocytogenes isolates from cold-smoked salmon produced in different smokehouses as assessed by random amplified polymorphic DNA analyses. Int J Food Microbiol 65:83–92 [CrossRef][PubMed]
    [Google Scholar]
  44. Vogel B. F., Hansen L. T., Mordhorst H., Gram L. 2010; The survival of Listeria monocytogenes during long term desiccation is facilitated by sodium chloride and organic material. Int J Food Microbiol 140:192–200 [CrossRef][PubMed]
    [Google Scholar]
  45. Wulff G., Gram L., Ahrens P., Vogel B. F. 2006; One group of genetically similar Listeria monocytogenes strains frequently dominates and persists in several fish slaughter- and smokehouses. Appl Environ Microbiol 72:4313–4322 [CrossRef][PubMed]
    [Google Scholar]
  46. Zeldovich V. B., Robbins J. R., Kapidzic M., Lauer P., Bakardjiev A. I. 2011; Invasive extravillous trophoblasts restrict intracellular growth and spread of Listeria monocytogenes . PLoS Pathog 7:e1002005 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.057505-0
Loading
/content/journal/jmm/10.1099/jmm.0.057505-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error