1887

Abstract

The endospores of can serve as a tool for surface presentation of heterologous proteins. The unique properties of the spore protective layers make them perfect vehicles for orally administered vaccines. In this study, we successfully displayed a fragment of FliD protein on the surface of spores using the CotB, CotC, CotG and CotZ spore coat proteins. The presence of the fusion proteins in the spore coat was verified by Western blotting and immunofluorescence microscopy. The amount of recombinant proteins was assessed by a dot-blot technique. is one of the most common infectious agents in nosocomial infections and is especially associated with antibiotic therapies. FliD is a flagellar cap protein of and is known to be one of the immunogenic surface antigens of this bacterium. Therefore, its use in vaccine formulations gives a good perspective for successful immunization with a FliD-based vaccine. The recombinant spores presented here may be good candidates for oral vaccines.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.057372-0
2013-09-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/9/1379.html?itemId=/content/journal/jmm/10.1099/jmm.0.057372-0&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Crawford I. P.. ( 1961;). Transformation studies on the linkage of markers in the tryptophan pathway in Bacillus subtilis. . Proc Natl Acad Sci U S A 47:, 378–390. [CrossRef][PubMed]
    [Google Scholar]
  2. Barák I., Ricca E., Cutting S. M.. ( 2005;). From fundamental studies of sporulation to applied spore research. . Mol Microbiol 55:, 330–338. [CrossRef][PubMed]
    [Google Scholar]
  3. Cutting S., Vander Horn P. B.. ( 1990;). Genetic analysis. . In Molecular Biological Methods for Bacillus, pp. 27–74. Edited by Harwood C., Cutting S... Chichester, UK:: John Wiley and Sons;.
    [Google Scholar]
  4. Duc Le H., Hong H. A., Fairweather N., Ricca E., Cutting S. M.. ( 2003;). Bacterial spores as vaccine vehicles. . Infect Immun 71:, 2810–2818. [CrossRef][PubMed]
    [Google Scholar]
  5. Harry E. J., Pogliano K., Losick R.. ( 1995;). Use of immunofluorescence to visualize cell-specific gene expression during sporulation in Bacillus subtilis. . J Bacteriol 177:, 3386–3393.[PubMed]
    [Google Scholar]
  6. Henriques A. O., Moran C. P. Jr. ( 2007;). Structure, assembly, and function of the spore surface layers. . Annu Rev Microbiol 61:, 555–588. [CrossRef][PubMed]
    [Google Scholar]
  7. Hinc K., Isticato R., Dembek M., Karczewska J., Iwanicki A., Peszyńska-Sularz G., De Felice M., Obuchowski M., Ricca E.. ( 2010;). Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores. . Microb Cell Fact 9:, 2. [CrossRef][PubMed]
    [Google Scholar]
  8. Imamura D., Kuwana R., Takamatsu H., Watabe K.. ( 2011;). Proteins involved in formation of the outermost layer of Bacillus subtilis spores. . J Bacteriol 193:, 4075–4080. [CrossRef][PubMed]
    [Google Scholar]
  9. Isticato R., Cangiano G., Tran H. T., Ciabattini A., Medaglini D., Oggioni M. R., De Felice M., Pozzi G., Ricca E.. ( 2001;). Surface display of recombinant proteins on Bacillus subtilis spores. . J Bacteriol 183:, 6294–6301. [CrossRef][PubMed]
    [Google Scholar]
  10. Isticato R., Cangiano G., De Felice M., Ricca E.. ( 2004;). Display of molecules on the spore surface. . In Bacterial Spore Formers, pp. 193–200. Edited by Ricca E., Henriques A. O., Cutting S. M... Wymondham, UK:: Horizon Bioscience;.
    [Google Scholar]
  11. Isticato R., Di Mase D. S., Mauriello E. M. F., De Felice M., Ricca E.. ( 2007;). Amino terminal fusion of heterologous proteins to CotC increases display efficiencies in the Bacillus subtilis spore system. . Biotechniques 42:, 151–156. [CrossRef][PubMed]
    [Google Scholar]
  12. Julkowska D., Obuchowski M., Holland I. B., Séror S. J.. ( 2005;). Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium. . J Bacteriol 187:, 65–76. [CrossRef][PubMed]
    [Google Scholar]
  13. Kuwana R., Kasahara Y., Fujibayashi M., Takamatsu H., Ogasawara N., Watabe K.. ( 2002;). Proteomics characterization of novel spore proteins of Bacillus subtilis. . Microbiology 148:, 3971–3982.[PubMed]
    [Google Scholar]
  14. Lai E. M., Phadke N. D., Kachman M. T., Giorno R., Vazquez S., Vazquez J. A., Maddock J. R., Driks A.. ( 2003;). Proteomic analysis of the spore coats of Bacillus subtilis and Bacillus anthracis. . J Bacteriol 185:, 1443–1454. [CrossRef][PubMed]
    [Google Scholar]
  15. Marqusee S., Robbins V. H., Baldwin R. L.. ( 1989;). Unusually stable helix formation in short alanine-based peptides. . Proc Natl Acad Sci U S A 86:, 5286–5290. [CrossRef][PubMed]
    [Google Scholar]
  16. Mauriello E. M. F., Duc Le H., Isticato R., Cangiano G., Hong H. A., De Felice M., Ricca E., Cutting S. M.. ( 2004;). Display of heterologous antigens on the Bacillus subtilis spore coat using CotC as a fusion partner. . Vaccine 22:, 1177–1187. [CrossRef][PubMed]
    [Google Scholar]
  17. Mauriello E. M., Cangiano G., Maurano F., Saggese V., De Felice M., Rossi M., Ricca E.. ( 2007;). Germination-independent induction of cellular immune response by Bacillus subtilis spores displaying the C fragment of the tetanus toxin. . Vaccine 25:, 788–793. [CrossRef][PubMed]
    [Google Scholar]
  18. McKenney P. T., Eichenberger P.. ( 2012;). Dynamics of spore coat morphogenesis in Bacillus subtilis. . Mol Microbiol 83:, 245–260. [CrossRef][PubMed]
    [Google Scholar]
  19. McKenney P. T., Driks A., Eskandarian H. A., Grabowski P., Guberman J., Wang K. H., Gitai Z., Eichenberger P.. ( 2010;). A distance-weighted interaction map reveals a previously uncharacterized layer of the Bacillus subtilis spore coat. . Curr Biol 20:, 934–938. [CrossRef][PubMed]
    [Google Scholar]
  20. Monroe A., Setlow P.. ( 2006;). Localization of the transglutaminase cross-linking sites in the Bacillus subtilis spore coat protein GerQ.. J Bacteriol 188:, 7609–7616. [CrossRef][PubMed]
    [Google Scholar]
  21. Nicholson W. L., Setlow P.. ( 1990;). Sporulation, germination and outgrowth. . In Molecular Biological Methods for Bacillus, pp. 391–450. Edited by Harwood C., Cutting S... Chichester, UK:: John Wiley & Sons;.
    [Google Scholar]
  22. Nicholson W. L., Munakata N., Horneck G., Melosh H. J., Setlow P.. ( 2000;). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. . Microbiol Mol Biol Rev 64:, 548–572. [CrossRef][PubMed]
    [Google Scholar]
  23. Péchiné S., Janoir C., Collignon A.. ( 2005;). Variability of Clostridium difficile surface proteins and specific serum antibody response in patients with Clostridium difficile-associated disease. . J Clin Microbiol 43:, 5018–5025. [CrossRef][PubMed]
    [Google Scholar]
  24. Péchiné S., Janoir C., Boureau H., Gleizes A., Tsapis N., Hoys S., Fattal E., Collignon A.. ( 2007;). Diminished intestinal colonization by Clostridium difficile and immune response in mice after mucosal immunization with surface proteins of Clostridium difficile. . Vaccine 25:, 3946–3954. [CrossRef][PubMed]
    [Google Scholar]
  25. Permpoonpattana P., Hong H. A., Phetcharaburanin J., Huang J. M., Cook J., Fairweather N. F., Cutting S. M.. ( 2011;). Immunization with Bacillus spores expressing toxin A peptide repeats protects against infection with Clostridium difficile strains producing toxins A and B.. Infect Immun 79:, 2295–2302. [CrossRef][PubMed]
    [Google Scholar]
  26. Ricca E., Cutting S. M.. ( 2003;). Emerging applications of bacterial spores in nanobiotechnology. . J Nanobiotechnology 1:, 6. [CrossRef][PubMed]
    [Google Scholar]
  27. Sacco M., Ricca E., Losick R., Cutting S.. ( 1995;). An additional GerE-controlled gene encoding an abundant spore coat protein from Bacillus subtilis. . J Bacteriol 177:, 372–377.[PubMed]
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  29. Tasteyre A., Barc M. C., Collignon A., Boureau H., Karjalainen T.. ( 2001;). Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization. . Infect Immun 69:, 7937–7940. [CrossRef][PubMed]
    [Google Scholar]
  30. Tavasoli S., Hinc K., Iwanicki A., Obuchowski M., Ahmadian G.. ( 2013;). Investigation of spore coat display of Bacillus subtilis β-galactosidase for developing of whole cell biocatalyst. . Arch Microbiol 195:, 197–202. [CrossRef]
    [Google Scholar]
  31. Warth A. D., Ohye D. F., Murrell W. G.. ( 1963;). The composition and structure of bacterial spores. . J Cell Biol 16:, 579–592. [CrossRef][PubMed]
    [Google Scholar]
  32. Yuan G., Wong S. L.. ( 1995;). Regulation of groE expression in Bacillus subtilis: the involvement of the σA-like promoter and the roles of the inverted repeat sequence (CIRCE). . J Bacteriol 177:, 5427–5433.[PubMed]
    [Google Scholar]
  33. Zhang J., Fitz-James P. C., Aronson A. I.. ( 1993;). Cloning and characterization of a cluster of genes encoding polypeptides present in the insoluble fraction of the spore coat of Bacillus subtilis. . J Bacteriol 175:, 3757–3766.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.057372-0
Loading
/content/journal/jmm/10.1099/jmm.0.057372-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error