1887

Abstract

Spore germination is an important part of the pathogenesis of infection (CDI). Spores are resistant to antibiotics, including those therapeutically administered for CDI and strains with a high germination rate are significantly more likely to be implicated in recurrent CDI. The role of germination efficiency in cases of refractory CDI where first-line therapy fails remains unclear. We investigated spore germination efficiencies of clinical isolates by measuring drop in OD and colony forming efficiency. Ribotype 027 isolates exhibited significantly higher germination efficiencies in the presence of 0.1 % (w/v) sodium taurocholate (51.66±8.75 %; 95 % confidence interval (CI) 47.37–55.95 %) than ribotype 106 (41.91±8.35 %; 95 % CI 37.82–46 %) (<0.05) and ribotype 078 (42.07±8.57 %, 95 % CI 37.22–46.92 %) (<0.05). Spore outgrowth rates were comparable between the ribotype groups but the exponential phase occurred approximately 4 h later in the absence of sodium taurocholate. Spore germination efficiencies for isolates implicated in severe CDI were significantly higher (49.68±10.00 %, 95 % CI 47.06–52.30 %) than non-severe CDI (40.92±9.29 %, 95 % CI 37.48–44.36 %); <0.01. Germination efficiencies were also significantly higher in recurrent CDI or when metronidazole therapy failed than when therapy was successful [(49.00±10.49 %, 95 % CI 46.25–51.75 %) versus (41.42±9.43 %, 95 % CI 37.93–44.91 %); <0.01]. This study suggests an important link between spore germination, CDI pathogenesis and response to treatment; however, further work is warranted before the complex interplay between germination dynamics and CDI outcome can be fully understood.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.056614-0
2013-09-01
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/9/1405.html?itemId=/content/journal/jmm/10.1099/jmm.0.056614-0&mimeType=html&fmt=ahah

References

  1. Baines S. D. , O’Connor R. , Saxton K. , Freeman J. , Wilcox M. H. . ( 2009; ). Activity of vancomycin against epidemic Clostridium difficile strains in a human gut model. . J Antimicrob Chemother 63:, 520–525. [CrossRef] [PubMed]
    [Google Scholar]
  2. Barbut F. , Richard A. , Hamadi K. , Chomette V. , Burghoffer B. , Petit J. C. . ( 2000; ). Epidemiology of recurrences or reinfections of Clostridium difficile-associated diarrhea. . J Clin Microbiol 38:, 2386–2388.[PubMed]
    [Google Scholar]
  3. Burns D. A. , Heap J. T. , Minton N. P. . ( 2010a; ). The diverse sporulation characteristics of Clostridium difficile clinical isolates are not associated with type. . Anaerobe 16:, 618–622. [CrossRef] [PubMed]
    [Google Scholar]
  4. Burns D. A. , Heap J. T. , Minton N. P. . ( 2010b; ). SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate. . J Bacteriol 192:, 657–664. [CrossRef] [PubMed]
    [Google Scholar]
  5. Burns K. , Skally M. , Solomon K. , Scott L. , McDermott S. , O’Flanagan D. , Fanning S. , Kyne L. , Fenelon L. , Fitzpatrick F. . ( 2010c; ). Clostridium difficile infection in the Republic of Ireland: results of a 1-month national surveillance and ribotyping project, March 2009. . Infect Control Hosp Epidemiol 31:, 1085–1087. [CrossRef] [PubMed]
    [Google Scholar]
  6. CLSI ( 2007; ). Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria Approved Standard M11–A7 . . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  7. Cohen S. H. , Tang Y. J. , Silva J. Jr . ( 2000; ). Analysis of the pathogenicity locus in Clostridium difficile strains. . J Infect Dis 181:, 659–663. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cohen S. H. , Gerding D. N. , Johnson S. , Kelly C. P. , Loo V. G. , McDonald L. C. , Pepin J. , Wilcox M. H. . Society for Healthcare Epidemiology of America Infectious Diseases Society of America ( 2010; ). Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). . Infect Control Hosp Epidemiol 31:, 431–455. [CrossRef] [PubMed]
    [Google Scholar]
  9. Freeman J. , Baines S. D. , Jabes D. , Wilcox M. H. . ( 2005; ). Comparison of the efficacy of ramoplanin and vancomycin in both in vitro and in vivo models of clindamycin-induced Clostridium difficile infection. . J Antimicrob Chemother 56:, 717–725. [CrossRef] [PubMed]
    [Google Scholar]
  10. Freeman J. , Baines S. D. , Saxton K. , Wilcox M. H. . ( 2007; ). Effect of metronidazole on growth and toxin production by epidemic Clostridium difficile PCR ribotypes 001 and 027 in a human gut model. . J Antimicrob Chemother 60:, 83–91. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gerding D. N. , Muto C. A. , Owens R. C. Jr . ( 2008; ). Measures to control and prevent Clostridium difficile infection. . Clin Infect Dis 46: (Suppl 1), S43–S49. [CrossRef] [PubMed]
    [Google Scholar]
  12. Heeg D. , Burns D. A. , Cartman S. T. , Minton N. P. . ( 2012; ). Spores of Clostridium difficile clinical isolates display a diverse germination response to bile salts. . PLoS ONE 7:, e32381. [CrossRef] [PubMed]
    [Google Scholar]
  13. Howerton A. , Ramirez N. , Abel-Santos E. . ( 2011; ). Mapping interactions between germinants and Clostridium difficile spores. . J Bacteriol 193:, 274–282. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hu M. Y. , Maroo S. , Kyne L. , Cloud J. , Tummala S. , Katchar K. , Dreisbach V. , Noddin L. , Kelly C. P. . ( 2008; ). A prospective study of risk factors and historical trends in metronidazole failure for Clostridium difficile infection. . Clin Gastroenterol Hepatol 6:, 1354–1360. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kelly C. P. , Pothoulakis C. , LaMont J. T. . ( 1994; ). Clostridium difficile colitis. . N Engl J Med 330:, 257–262. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kyne L. , Warny M. , Qamar A. , Kelly C. P. . ( 2001; ). Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. . Lancet 357:, 189–193. [CrossRef] [PubMed]
    [Google Scholar]
  17. McFarland L. V. , Elmer G. W. , Surawicz C. M. . ( 2002; ). Breaking the cycle: treatment strategies for 163 cases of recurrent Clostridium difficile disease. . Am J Gastroenterol 97:, 1769–1775. [CrossRef] [PubMed]
    [Google Scholar]
  18. Norén T. , Akerlund T. , Bäck E. , Sjöberg L. , Persson I. , Alriksson I. , Burman L. G. . ( 2004; ). Molecular epidemiology of hospital-associated and community-acquired Clostridium difficile infection in a Swedish county. . J Clin Microbiol 42:, 3635–3643. [CrossRef] [PubMed]
    [Google Scholar]
  19. Oka K. , Osaki T. , Hanawa T. , Kurata S. , Okazaki M. , Manzoku T. , Takahashi M. , Tanaka M. , Taguchi H. . & other authors ( 2012; ). Molecular and microbiological characterization of Clostridium difficile isolates from single, relapse, and reinfection cases. . J Clin Microbiol 50:, 915–921. [CrossRef] [PubMed]
    [Google Scholar]
  20. Paidhungat M. , Setlow P. . ( 2000; ). Role of ger proteins in nutrient and nonnutrient triggering of spore germination in Bacillus subtilis . . J Bacteriol 182:, 2513–2519. [CrossRef] [PubMed]
    [Google Scholar]
  21. Paredes-Sabja D. , Bond C. , Carman R. J. , Setlow P. , Sarker M. R. . ( 2008; ). Germination of spores of Clostridium difficile strains, including isolates from a hospital outbreak of Clostridium difficile-associated disease (CDAD). . Microbiology 154:, 2241–2250. [CrossRef] [PubMed]
    [Google Scholar]
  22. Paredes-Sabja D. , Setlow P. , Sarker M. R. . ( 2009; ). Role of gerKB in germination and outgrowth of Clostridium perfringens spores. . Appl Environ Microbiol 75:, 3813–3817. [CrossRef] [PubMed]
    [Google Scholar]
  23. Ramirez N. , Liggins M. , Abel-Santos E. . ( 2010; ). Kinetic evidence for the presence of putative germination receptors in Clostridium difficile spores. . J Bacteriol 192:, 4215–4222. [CrossRef] [PubMed]
    [Google Scholar]
  24. Riggs M. M. , Sethi A. K. , Zabarsky T. F. , Eckstein E. C. , Jump R. L. , Donskey C. J. . ( 2007; ). Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium difficile strains among long-term care facility residents. . Clin Infect Dis 45:, 992–998. [CrossRef] [PubMed]
    [Google Scholar]
  25. Rupnik M. , Avesani V. , Janc M. , von Eichel-Streiber C. , Delmée M. . ( 1998; ). A novel toxinotyping scheme and correlation of toxinotypes with serogroups of Clostridium difficile isolates. . J Clin Microbiol 36:, 2240–2247.[PubMed]
    [Google Scholar]
  26. Setlow P. . ( 2003; ). Spore germination. . Curr Opin Microbiol 6:, 550–556. [CrossRef] [PubMed]
    [Google Scholar]
  27. Solomon K. , Murray S. , Scott L. , McDermott S. , Drudy D. , Martin A. , O’Donoghue C. , Skally M. , Burns K. . & other authors ( 2011; ). An investigation of the subtype diversity of clinical isolates of Irish Clostridium difficile ribotypes 027 and 078 by repetitive-extragenic palindromic PCR. . J Med Microbiol 60:, 1080–1087. [CrossRef] [PubMed]
    [Google Scholar]
  28. Sorg J. A. , Sonenshein A. L. . ( 2008; ). Bile salts and glycine as cogerminants for Clostridium difficile spores. . J Bacteriol 190:, 2505–2512. [CrossRef] [PubMed]
    [Google Scholar]
  29. Sorg J. A. , Sonenshein A. L. . ( 2009; ). Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination. . J Bacteriol 191:, 1115–1117. [CrossRef] [PubMed]
    [Google Scholar]
  30. Stubbs S. L. , Brazier J. S. , O’Neill G. L. , Duerden B. I. . ( 1999; ). PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. . J Clin Microbiol 37:, 461–463.[PubMed]
    [Google Scholar]
  31. Voth D. E. , Ballard J. D. . ( 2005; ). Clostridium difficile toxins: mechanism of action and role in disease. . Clin Microbiol Rev 18:, 247–263. [CrossRef] [PubMed]
    [Google Scholar]
  32. Warren C. A. , Opstal E. J. , Riggins M. S. , Li Y. , Moore J. H. , Kolling G. L. , Guerrant R. L. , Hoffman P. S. . ( 2012; ). Vancomycin treatment's association with delayed intestinal tissue injury, clostridial overgrowth and recurrence of Clostridium difficile infection in mice. . Antimicrob Agents Chemother 57:, 689–696.[PubMed] [CrossRef]
    [Google Scholar]
  33. Wilcox M. H. , Fawley W. N. , Settle C. D. , Davidson A. . ( 1998; ). Recurrence of symptoms in Clostridium difficile infection – relapse or reinfection?. J Hosp Infect 38:, 93–100. [CrossRef] [PubMed]
    [Google Scholar]
  34. Wilson K. H. . ( 1983; ). Efficiency of various bile salt preparations for stimulation of Clostridium difficile spore germination. . J Clin Microbiol 18:, 1017–1019.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.056614-0
Loading
/content/journal/jmm/10.1099/jmm.0.056614-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error