1887

Abstract

Bacille Calmette–Guérin (BCG) is the current vaccine used against (MTB) infection. However, exposure to environmental pathogens, such as , interferes with the immune response induced by BCG vaccination. How affects the efficiency of BCG is unclear. In this study, BCG-vaccinated mice pre-treated with -derived lipids (MALs) showed a higher mycobacterial load and increased infiltration of inflammatory cells compared to control mice treated with -derived lipids (ELs). Unexpectedly, there were no changes in cell proliferation or IFN-γ levels in spleen cells stimulated with protein purified derivatives (PPD) or heat-inactivated BCG in MALs-treated mice. However, pre-treatment with MALs decreased the bactericidal effect as well as the production of TNF-α and nitric oxide (NO) in murine macrophages from BCG-vaccinated mice stimulated with IFN-γ. These results suggest that MAL pre-treatment dampens the immune response against MTB and that this dampening is associated with a decreased response to IFN-γ stimulation in murine macrophages. T-lymphocyte responses, however, were unaffected.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.056283-0
2013-07-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/7/980.html?itemId=/content/journal/jmm/10.1099/jmm.0.056283-0&mimeType=html&fmt=ahah

References

  1. Bekker L. G. , Moreira A. L. , Bergtold A. , Freeman S. , Ryffel B. , Kaplan G. . ( 2000; ). Immunopathologic effects of tumor necrosis factor alpha in murine mycobacterial infection are dose dependent. . Infect Immun 68:, 6954–6961. [CrossRef] [PubMed]
    [Google Scholar]
  2. Buddle B. M. , Wards B. J. , Aldwell F. E. , Collins D. M. , de Lisle G. W. . ( 2002; ). Influence of sensitisation to environmental mycobacteria on subsequent vaccination against bovine tuberculosis. . Vaccine 20:, 1126–1133. [CrossRef] [PubMed]
    [Google Scholar]
  3. de Lisle G. W. , Wards B. J. , Buddle B. M. , Collins D. M. . ( 2005; ). The efficacy of live tuberculosis vaccines after presensitization with Mycobacterium avium . . Tuberculosis (Edinb) 85:, 73–79. [CrossRef] [PubMed]
    [Google Scholar]
  4. Demangel C. , Garnier T. , Rosenkrands I. , Cole S. T. . ( 2005; ). Differential effects of prior exposure to environmental mycobacteria on vaccination with Mycobacterium bovis BCG or a recombinant BCG strain expressing RD1 antigens. . Infect Immun 73:, 2190–2196. [CrossRef] [PubMed]
    [Google Scholar]
  5. Ehlers S. , Kutsch S. , Benini J. , Cooper A. , Hahn C. , Gerdes J. , Orme I. , Martin C. , Rietschel E. T. . ( 1999; ). NOS2-derived nitric oxide regulates the size, quantity and quality of granuloma formation in Mycobacterium avium-infected mice without affecting bacterial loads. . Immunology 98:, 313–323. [CrossRef] [PubMed]
    [Google Scholar]
  6. Fine P. E. . ( 1989; ). The BCG story: lessons from the past and implications for the future. . Rev Infect Dis 11: (Suppl 2), S353–S359. [CrossRef] [PubMed]
    [Google Scholar]
  7. Flaherty D. K. , Vesosky B. , Beamer G. L. , Stromberg P. , Turner J. . ( 2006; ). Exposure to Mycobacterium avium can modulate established immunity against Mycobacterium tuberculosis infection generated by Mycobacterium bovis BCG vaccination. . J Leukoc Biol 80:, 1262–1271. [CrossRef] [PubMed]
    [Google Scholar]
  8. Flynn J. L. , Goldstein M. M. , Chan J. , Triebold K. J. , Pfeffer K. , Lowenstein C. J. , Schreiber R. , Mak T. W. , Bloom B. R. . ( 1995; ). Tumor necrosis factor-α is required in the protective immune response against Mycobacterium tuberculosis in mice. . Immunity 2:, 561–572. [CrossRef] [PubMed]
    [Google Scholar]
  9. Folch J. , Lees M. , Sloane Stanley G. H. . ( 1957; ). A simple method for the isolation and purification of total lipids from animal tissues. . J Biol Chem 226:, 497–509.[PubMed]
    [Google Scholar]
  10. Fortier A. H. , Hoover D. L. , Nacy C. A. . ( 1982; ). Intracellular replication of Leishmania tropica in mouse peritoneal macrophages: amastigote infection of resident cells and inflammatory exudate macrophages. . Infect Immun 38:, 1304–1308.[PubMed]
    [Google Scholar]
  11. Gao H. , Yue Y. , Hu L. , Xu W. , Xiong S. . ( 2009; ). A novel DNA vaccine containing multiple TB-specific epitopes casted in a natural structure (ECANS) confers protective immunity against pulmonary mycobacterial challenge. . Vaccine 27:, 5313–5319. [CrossRef] [PubMed]
    [Google Scholar]
  12. Horgen L. , Barrow E. L. , Barrow W. W. , Rastogi N. . ( 2000; ). Exposure of human peripheral blood mononuclear cells to total lipids and serovar-specific glycopeptidolipids from Mycobacterium avium serovars 4 and 8 results in inhibition of TH1-type responses. . Microb Pathog 29:, 9–16. [CrossRef] [PubMed]
    [Google Scholar]
  13. Howard C. J. , Kwong L. S. , Villarreal-Ramos B. , Sopp P. , Hope J. C. . ( 2002; ). Exposure to Mycobacterium avium primes the immune system of calves for vaccination with Mycobacterium bovis BCG. . Clin Exp Immunol 130:, 190–195. [CrossRef] [PubMed]
    [Google Scholar]
  14. Lafuse W. P. , Alvarez G. R. , Curry H. M. , Zwilling B. S. . ( 2006; ). Mycobacterium tuberculosis and Mycobacterium avium inhibit IFN-γ-induced gene expression by TLR2-dependent and independent pathways. . J Interferon Cytokine Res 26:, 548–561. [CrossRef] [PubMed]
    [Google Scholar]
  15. MacMicking J. D. , Taylor G. A. , McKinney J. D. . ( 2003; ). Immune control of tuberculosis by IFN-γ-inducible LRG-47. . Science 302:, 654–659. [CrossRef] [PubMed]
    [Google Scholar]
  16. Martins D. R. , Pelizon A. C. , Zorzella-Pezavento S. F. , Seger J. , Santos Junior R. R. , Fonseca D. M. , Justulin L. A. Jr , Silva C. L. , Sartori A. . ( 2011; ). Exposure to Mycobacterium avium decreases the protective effect of the DNA vaccine pVAXhsp65 against Mycobacterium tuberculosis-induced inflammation of the pulmonary parenchyma. . Scand J Immunol 73:, 293–300. [CrossRef] [PubMed]
    [Google Scholar]
  17. Mendoza-Coronel E. , Camacho-Sandoval R. , Bonifaz L. C. , López-Vidal Y. . ( 2011; ). PD-L2 induction on dendritic cells exposed to Mycobacterium avium downregulates BCG-specific T cell response. . Tuberculosis (Edinb) 91:, 36–46. [CrossRef] [PubMed]
    [Google Scholar]
  18. Olleros M. L. , Vesin D. , Bisig R. , Santiago-Raber M. L. , Schuepbach-Mallepell S. , Kollias G. , Gaide O. , Garcia I. . ( 2012; ). Membrane-bound TNF induces protective immune responses to M. bovis BCG infection: regulation of memTNF and TNF receptors comparing two memTNF molecules. . PLoS ONE 7:, e31469. [CrossRef] [PubMed]
    [Google Scholar]
  19. Roger P. M. , Bermudez L. E. . ( 2001; ). Infection of mice with Mycobacterium avium primes CD8+ lymphocytes for apoptosis upon exposure to macrophages. . Clin Immunol 99:, 378–386. [CrossRef] [PubMed]
    [Google Scholar]
  20. Sangari F. J. , Petrofsky M. , Bermudez L. E. . ( 1999; ). Mycobacterium avium infection of epithelial cells results in inhibition or delay in the release of interleukin-8 and RANTES. . Infect Immun 67:, 5069–5075.[PubMed]
    [Google Scholar]
  21. Silva R. A. , Pais T. F. , Appelberg R. . ( 2001; ). Blocking the receptor for IL-10 improves antimycobacterial chemotherapy and vaccination. . J Immunol 167:, 1535–1541.[PubMed] [CrossRef]
    [Google Scholar]
  22. Sweet L. , Singh P. P. , Azad A. K. , Rajaram M. V. , Schlesinger L. S. , Schorey J. S. . ( 2010; ). Mannose receptor-dependent delay in phagosome maturation by Mycobacterium avium glycopeptidolipids. . Infect Immun 78:, 518–526. [CrossRef] [PubMed]
    [Google Scholar]
  23. Tsuyuguchi I. , Kawasumi H. , Takashima T. , Tsuyuguchi T. , Kishimoto S. . ( 1990; ). Mycobacterium avium-Mycobacterium intracellulare complex-induced suppression of T-cell proliferation in vitro by regulation of monocyte accessory cell activity. . Infect Immun 58:, 1369–1378.[PubMed]
    [Google Scholar]
  24. Van Rhijn I. , Nguyen T. K. , Michel A. , Cooper D. , Govaerts M. , Cheng T. Y. , van Eden W. , Moody D. B. , Coetzer J. A. et al. ( 2009; ). Low cross-reactivity of T-cell responses against lipids from Mycobacterium bovis and M. avium paratuberculosis during natural infection. . Eur J Immunol 39:, 3031–3041. [CrossRef] [PubMed]
    [Google Scholar]
  25. Wagner D. , Sangari F. J. , Kim S. , Petrofsky M. , Bermudez L. E. . ( 2002; ). Mycobacterium avium infection of macrophages results in progressive suppression of interleukin-12 production in vitro and in vivo . . J Leukoc Biol 71:, 80–88.[PubMed]
    [Google Scholar]
  26. WHO ( 2008; ). WHO Vaccine-Preventable Diseases: Monitoring System 2008 Global Summary, pp. 1–333. Geneva:: WHO;.
    [Google Scholar]
  27. WHO ( 2009; ). Global Tuberculosis Control: Epidemiology, Strategy, Financing. Geneva:: WHO;.
    [Google Scholar]
  28. Yang D. , Liu Y. , Chen Y. , Jiao D. , Hou X. , Wang L. , Fu N. . ( 2012; ). Pretreatment with Mycobacterium avium-derived lipids attenuates the response of murine macrophages to components of Mycobacterium tuberculosis . . Int J Mol Med 29:, 1072–1082.[PubMed]
    [Google Scholar]
  29. Zhang X. , Goncalves R. , Mosser D. M. . ( 2008; ). The isolation and characterization of murine macrophages. . Curr Protoc Immunol. 83, 14.1.1–14.1.14. [CrossRef]
    [Google Scholar]
  30. Zhong J. , Gilbertson B. , Cheers C. . ( 2003; ). Apoptosis of CD4+ and CD8+ T cells during experimental infection with Mycobacterium avium is controlled by Fas/FasL and Bcl-2-sensitive pathways, respectively. . Immunol Cell Biol 81:, 480–486. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.056283-0
Loading
/content/journal/jmm/10.1099/jmm.0.056283-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error