1887

Abstract

Bacille Calmette–Guérin (BCG) is the current vaccine used against (MTB) infection. However, exposure to environmental pathogens, such as , interferes with the immune response induced by BCG vaccination. How affects the efficiency of BCG is unclear. In this study, BCG-vaccinated mice pre-treated with -derived lipids (MALs) showed a higher mycobacterial load and increased infiltration of inflammatory cells compared to control mice treated with -derived lipids (ELs). Unexpectedly, there were no changes in cell proliferation or IFN-γ levels in spleen cells stimulated with protein purified derivatives (PPD) or heat-inactivated BCG in MALs-treated mice. However, pre-treatment with MALs decreased the bactericidal effect as well as the production of TNF-α and nitric oxide (NO) in murine macrophages from BCG-vaccinated mice stimulated with IFN-γ. These results suggest that MAL pre-treatment dampens the immune response against MTB and that this dampening is associated with a decreased response to IFN-γ stimulation in murine macrophages. T-lymphocyte responses, however, were unaffected.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.056283-0
2013-07-01
2021-03-05
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/7/980.html?itemId=/content/journal/jmm/10.1099/jmm.0.056283-0&mimeType=html&fmt=ahah

References

  1. Bekker L. G., Moreira A. L., Bergtold A., Freeman S., Ryffel B., Kaplan G. 2000; Immunopathologic effects of tumor necrosis factor alpha in murine mycobacterial infection are dose dependent. Infect Immun 68:6954–6961 [CrossRef][PubMed]
    [Google Scholar]
  2. Buddle B. M., Wards B. J., Aldwell F. E., Collins D. M., de Lisle G. W. 2002; Influence of sensitisation to environmental mycobacteria on subsequent vaccination against bovine tuberculosis. Vaccine 20:1126–1133 [CrossRef][PubMed]
    [Google Scholar]
  3. de Lisle G. W., Wards B. J., Buddle B. M., Collins D. M. 2005; The efficacy of live tuberculosis vaccines after presensitization with Mycobacterium avium . Tuberculosis (Edinb) 85:73–79 [CrossRef][PubMed]
    [Google Scholar]
  4. Demangel C., Garnier T., Rosenkrands I., Cole S. T. 2005; Differential effects of prior exposure to environmental mycobacteria on vaccination with Mycobacterium bovis BCG or a recombinant BCG strain expressing RD1 antigens. Infect Immun 73:2190–2196 [CrossRef][PubMed]
    [Google Scholar]
  5. Ehlers S., Kutsch S., Benini J., Cooper A., Hahn C., Gerdes J., Orme I., Martin C., Rietschel E. T. 1999; NOS2-derived nitric oxide regulates the size, quantity and quality of granuloma formation in Mycobacterium avium-infected mice without affecting bacterial loads. Immunology 98:313–323 [CrossRef][PubMed]
    [Google Scholar]
  6. Fine P. E. 1989; The BCG story: lessons from the past and implications for the future. Rev Infect Dis 11:Suppl 2S353–S359 [CrossRef][PubMed]
    [Google Scholar]
  7. Flaherty D. K., Vesosky B., Beamer G. L., Stromberg P., Turner J. 2006; Exposure to Mycobacterium avium can modulate established immunity against Mycobacterium tuberculosis infection generated by Mycobacterium bovis BCG vaccination. J Leukoc Biol 80:1262–1271 [CrossRef][PubMed]
    [Google Scholar]
  8. Flynn J. L., Goldstein M. M., Chan J., Triebold K. J., Pfeffer K., Lowenstein C. J., Schreiber R., Mak T. W., Bloom B. R. 1995; Tumor necrosis factor-α is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2:561–572 [CrossRef][PubMed]
    [Google Scholar]
  9. Folch J., Lees M., Sloane Stanley G. H. 1957; A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509[PubMed]
    [Google Scholar]
  10. Fortier A. H., Hoover D. L., Nacy C. A. 1982; Intracellular replication of Leishmania tropica in mouse peritoneal macrophages: amastigote infection of resident cells and inflammatory exudate macrophages. Infect Immun 38:1304–1308[PubMed]
    [Google Scholar]
  11. Gao H., Yue Y., Hu L., Xu W., Xiong S. 2009; A novel DNA vaccine containing multiple TB-specific epitopes casted in a natural structure (ECANS) confers protective immunity against pulmonary mycobacterial challenge. Vaccine 27:5313–5319 [CrossRef][PubMed]
    [Google Scholar]
  12. Horgen L., Barrow E. L., Barrow W. W., Rastogi N. 2000; Exposure of human peripheral blood mononuclear cells to total lipids and serovar-specific glycopeptidolipids from Mycobacterium avium serovars 4 and 8 results in inhibition of TH1-type responses. Microb Pathog 29:9–16 [CrossRef][PubMed]
    [Google Scholar]
  13. Howard C. J., Kwong L. S., Villarreal-Ramos B., Sopp P., Hope J. C. 2002; Exposure to Mycobacterium avium primes the immune system of calves for vaccination with Mycobacterium bovis BCG. Clin Exp Immunol 130:190–195 [CrossRef][PubMed]
    [Google Scholar]
  14. Lafuse W. P., Alvarez G. R., Curry H. M., Zwilling B. S. 2006; Mycobacterium tuberculosis and Mycobacterium avium inhibit IFN-γ-induced gene expression by TLR2-dependent and independent pathways. J Interferon Cytokine Res 26:548–561 [CrossRef][PubMed]
    [Google Scholar]
  15. MacMicking J. D., Taylor G. A., McKinney J. D. 2003; Immune control of tuberculosis by IFN-γ-inducible LRG-47. Science 302:654–659 [CrossRef][PubMed]
    [Google Scholar]
  16. Martins D. R., Pelizon A. C., Zorzella-Pezavento S. F., Seger J., Santos Junior R. R., Fonseca D. M., Justulin L. A. Jr, Silva C. L., Sartori A. 2011; Exposure to Mycobacterium avium decreases the protective effect of the DNA vaccine pVAXhsp65 against Mycobacterium tuberculosis-induced inflammation of the pulmonary parenchyma. Scand J Immunol 73:293–300 [CrossRef][PubMed]
    [Google Scholar]
  17. Mendoza-Coronel E., Camacho-Sandoval R., Bonifaz L. C., López-Vidal Y. 2011; PD-L2 induction on dendritic cells exposed to Mycobacterium avium downregulates BCG-specific T cell response. Tuberculosis (Edinb) 91:36–46 [CrossRef][PubMed]
    [Google Scholar]
  18. Olleros M. L., Vesin D., Bisig R., Santiago-Raber M. L., Schuepbach-Mallepell S., Kollias G., Gaide O., Garcia I. 2012; Membrane-bound TNF induces protective immune responses to M. bovis BCG infection: regulation of memTNF and TNF receptors comparing two memTNF molecules. PLoS ONE 7:e31469 [CrossRef][PubMed]
    [Google Scholar]
  19. Roger P. M., Bermudez L. E. 2001; Infection of mice with Mycobacterium avium primes CD8+ lymphocytes for apoptosis upon exposure to macrophages. Clin Immunol 99:378–386 [CrossRef][PubMed]
    [Google Scholar]
  20. Sangari F. J., Petrofsky M., Bermudez L. E. 1999; Mycobacterium avium infection of epithelial cells results in inhibition or delay in the release of interleukin-8 and RANTES. Infect Immun 67:5069–5075[PubMed]
    [Google Scholar]
  21. Silva R. A., Pais T. F., Appelberg R. 2001; Blocking the receptor for IL-10 improves antimycobacterial chemotherapy and vaccination. J Immunol 167:1535–1541[PubMed] [CrossRef]
    [Google Scholar]
  22. Sweet L., Singh P. P., Azad A. K., Rajaram M. V., Schlesinger L. S., Schorey J. S. 2010; Mannose receptor-dependent delay in phagosome maturation by Mycobacterium avium glycopeptidolipids. Infect Immun 78:518–526 [CrossRef][PubMed]
    [Google Scholar]
  23. Tsuyuguchi I., Kawasumi H., Takashima T., Tsuyuguchi T., Kishimoto S. 1990; Mycobacterium avium-Mycobacterium intracellulare complex-induced suppression of T-cell proliferation in vitro by regulation of monocyte accessory cell activity. Infect Immun 58:1369–1378[PubMed]
    [Google Scholar]
  24. Van Rhijn I., Nguyen T. K., Michel A., Cooper D., Govaerts M., Cheng T. Y., van Eden W., Moody D. B., Coetzer J. A. et al. 2009; Low cross-reactivity of T-cell responses against lipids from Mycobacterium bovis and M. avium paratuberculosis during natural infection. Eur J Immunol 39:3031–3041 [CrossRef][PubMed]
    [Google Scholar]
  25. Wagner D., Sangari F. J., Kim S., Petrofsky M., Bermudez L. E. 2002; Mycobacterium avium infection of macrophages results in progressive suppression of interleukin-12 production in vitro and in vivo . J Leukoc Biol 71:80–88[PubMed]
    [Google Scholar]
  26. WHO 2008 WHO Vaccine-Preventable Diseases: Monitoring System 2008 Global Summary pp. 1–333 Geneva: WHO;
    [Google Scholar]
  27. WHO 2009 Global Tuberculosis Control: Epidemiology, Strategy, Financing Geneva: WHO;
    [Google Scholar]
  28. Yang D., Liu Y., Chen Y., Jiao D., Hou X., Wang L., Fu N. 2012; Pretreatment with Mycobacterium avium-derived lipids attenuates the response of murine macrophages to components of Mycobacterium tuberculosis . Int J Mol Med 29:1072–1082[PubMed]
    [Google Scholar]
  29. Zhang X., Goncalves R., Mosser D. M. 2008; The isolation and characterization of murine macrophages. Curr Protoc Immunol 8314.1.1–14.1.14 [CrossRef]
    [Google Scholar]
  30. Zhong J., Gilbertson B., Cheers C. 2003; Apoptosis of CD4+ and CD8+ T cells during experimental infection with Mycobacterium avium is controlled by Fas/FasL and Bcl-2-sensitive pathways, respectively. Immunol Cell Biol 81:480–486 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.056283-0
Loading
/content/journal/jmm/10.1099/jmm.0.056283-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error