1887

Abstract

Shared strains of are now well recognized in people with cystic fibrosis (CF), and suitable laboratory typing tools are pivotal to understanding their clinical significance and guiding infection control policies in CF clinics. We therefore compared a single-nucleotide polymorphism (SNP)-based typing method using Sequenom iPLEX matrix-assisted laser desorption ionization with time-of-flight mass spectrometry (MALDI-TOF MS) with typing methods used routinely by our laboratory. We analysed 617 isolates that included 561 isolates from CF patients collected between 2001 and 2009 in two Brisbane CF clinics and typed previously by enterobacterial repetitive intergenic consensus (ERIC)-PCR, as well as 56 isolates from non-CF patients analysed previously by multilocus sequence typing (MLST). The isolates were tested using a Sequenom iPLEX MALDI-TOF (PA iPLEX) method comprising two multiplex reactions, a 13-plex and an 8-plex, to characterize 20 SNPs from the housekeeping genes , , , , , and . These 20 SNPs were employed previously in a real-time format involving 20 separate assays in our laboratory. The SNP analysis revealed 121 different SNP profiles for the 561 CF isolates. Overall, there was at least 96 % agreement between the ERIC-PCR and SNP analyses for all predominant shared strains among patients attending our CF clinics: AUST-01, AUST-02 and AUST-06. For the less frequently encountered shared strain AUST-07, 6/25 (24 %) ERIC-PCR profiles were misidentified initially as AUST-02 or as unique, illustrating the difficulty of gel-based analyses. SNP results for the 56 non-CF isolates were consistent with previous MLST data. Thus, the PA iPLEX format provides an attractive high-throughput alternative to ERIC-PCR for large-scale investigations of shared strains.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.055905-0
2013-05-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/5/734.html?itemId=/content/journal/jmm/10.1099/jmm.0.055905-0&mimeType=html&fmt=ahah

References

  1. Aaron S. D. , Vandemheen K. L. , Ramotar K. , Giesbrecht-Lewis T. , Tullis E. , Freitag A. , Paterson N. , Jackson M. , Lougheed M. D. et al. ( 2010; ). Infection with transmissible strains of Pseudomonas aeruginosa and clinical outcomes in adults with cystic fibrosis. . JAMA 304:, 2145–2153. [CrossRef] [PubMed]
    [Google Scholar]
  2. Anuj S. N. , Whiley D. M. , Kidd T. J. , Ramsay K. A. , Bell S. C. , Syrmis M. W. , Grimwood K. , Wainwright C. E. , Nissen M. D. , Sloots T. P. . ( 2011; ). Rapid single-nucleotide polymorphism-based identification of clonal Pseudomonas aeruginosa isolates from patients with cystic fibrosis by the use of real-time PCR and high-resolution melting curve analysis. . Clin Microbiol Infect 17:, 1403–1408.[PubMed] [CrossRef]
    [Google Scholar]
  3. Armstrong D. S. , Nixon G. M. , Carzino R. , Bigham A. , Carlin J. B. , Robins-Browne R. M. , Grimwood K. . ( 2002; ). Detection of a widespread clone of Pseudomonas aeruginosa in a pediatric cystic fibrosis clinic. . Am J Respir Crit Care Med 166:, 983–987. [CrossRef] [PubMed]
    [Google Scholar]
  4. Ballarini A. , Scalet G. , Kos M. , Cramer N. , Wiehlmann L. , Jousson O. . ( 2012; ). Molecular typing and epidemiological investigation of clinical populations of Pseudomonas aeruginosa using an oligonucleotide-microarray. . BMC Microbiol 12:, 152. [CrossRef] [PubMed]
    [Google Scholar]
  5. Blanc D. S. . ( 2004; ). The use of molecular typing for epidemiological surveillance and investigation of endemic nosocomial infections. . Infect Genet Evol 4:, 193–197. [CrossRef] [PubMed]
    [Google Scholar]
  6. Fothergill J. L. , White J. , Foweraker J. E. , Walshaw M. J. , Ledson M. J. , Mahenthiralingam E. , Winstanley C. . ( 2010; ). Impact of Pseudomonas aeruginosa genomic instability on the application of typing methods for chronic cystic fibrosis infections. . J Clin Microbiol 48:, 2053–2059. [CrossRef] [PubMed]
    [Google Scholar]
  7. Fothergill J. L. , Walshaw M. J. , Winstanley C. . ( 2012; ). Transmissible strains of Pseudomonas aeruginosa in cystic fibrosis lung infections. . Eur Respir J 40:, 227–238. [CrossRef] [PubMed]
    [Google Scholar]
  8. Foxman B. , Zhang L. , Koopman J. S. , Manning S. D. , Marrs C. F. . ( 2005; ). Choosing an appropriate bacterial typing technique for epidemiologic studies. . Epidemiol Perspect Innov 2:, 10. [CrossRef] [PubMed]
    [Google Scholar]
  9. Gómez-Díaz E. . ( 2009; ). Linking questions to practices in the study of microbial pathogens: sampling bias and typing methods. . Infect Genet Evol 9:, 1418–1423. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kidd T. J. , Grimwood K. , Ramsay K. A. , Rainey P. B. , Bell S. C. . ( 2011a; ). Comparison of three molecular techniques for typing Pseudomonas aeruginosa isolates in sputum samples from patients with cystic fibrosis. . J Clin Microbiol 49:, 263–268. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kidd T. J. , Whiley D. M. , Bell S. C. , Grimwood K. . ( 2011b; ). Pseudomonas . . In Molecular Detection of Human Bacterial Pathogens, pp. 1009–1021. Edited by Liu D. . . Boca Raton, FL:: CRC Press;. [CrossRef]
    [Google Scholar]
  12. Kidd T. J. , Ramsay K. A. , Hu H. , Marks G. B. , Wainwright C. E. , Bye P. T. , Elkins M. R. , Robinson P. J. , Rose B. R. et al. ( 2012a; ). Shared Pseudomonas aeruginosa genotypes are common in Australian cystic fibrosis centres. . Eur Respir J 2012:, 9 (Epub ahead of print).[PubMed]
    [Google Scholar]
  13. Kidd T. J. , Ritchie S. R. , Ramsay K. A. , Grimwood K. , Bell S. C. , Rainey P. B. . ( 2012b; ). Pseudomonas aeruginosa exhibits frequent recombination, but only a limited association between genotype and ecological setting. . PLoS ONE 7:, e44199. [CrossRef] [PubMed]
    [Google Scholar]
  14. Li W. , Raoult D. , Fournier P. E. . ( 2009; ). Bacterial strain typing in the genomic era. . FEMS Microbiol Rev 33:, 892–916. [CrossRef] [PubMed]
    [Google Scholar]
  15. Meacham K. J. , Zhang L. , Foxman B. , Bauer R. J. , Marrs C. F. . ( 2003; ). Evaluation of genotyping large numbers of Escherichia coli isolates by enterobacterial repetitive intergenic consensus-PCR. . J Clin Microbiol 41:, 5224–5226. [CrossRef] [PubMed]
    [Google Scholar]
  16. O’Carroll M. R. , Syrmis M. W. , Wainwright C. E. , Greer R. M. , Mitchell P. , Coulter C. , Sloots T. P. , Nissen M. D. , Bell S. C. . ( 2004; ). Clonal strains of Pseudomonas aeruginosa in paediatric and adult cystic fibrosis units. . Eur Respir J 24:, 101–106. [CrossRef] [PubMed]
    [Google Scholar]
  17. Oeth P. , Mistro G. , Marnellos G. , Shi T. . ( 2009; ). Single Nucleotide Polymorphisms. Edited by Komar A. A. . . Totowa, NJ:: Humana Press;.
    [Google Scholar]
  18. Scott F. W. , Pitt T. L. . ( 2004; ). Identification and characterization of transmissible Pseudomonas aeruginosa strains in cystic fibrosis patients in England and Wales. . J Med Microbiol 53:, 609–615. [CrossRef] [PubMed]
    [Google Scholar]
  19. Struelens M. J. . ( 1998; ). Molecular epidemiologic typing systems of bacterial pathogens: current issues and perspectives. . Mem Inst Oswaldo Cruz 93:, 581–585. [CrossRef] [PubMed]
    [Google Scholar]
  20. Syrmis M. W. , O’Carroll M. R. , Sloots T. P. , Coulter C. , Wainwright C. E. , Bell S. C. , Nissen M. D. . ( 2004; ). Rapid genotyping of Pseudomonas aeruginosa isolates harboured by adult and paediatric patients with cystic fibrosis using repetitive-element-based PCR assays. . J Med Microbiol 53:, 1089–1096. [CrossRef] [PubMed]
    [Google Scholar]
  21. Syrmis M. W. , Moser R. J. , Whiley D. M. , Vaska V. , Coombs G. W. , Nissen M. D. , Sloots T. P. , Nimmo G. R. . ( 2011; ). Comparison of a multiplexed MassARRAY system with real-time allele-specific PCR technology for genotyping of methicillin-resistant Staphylococcus aureus. . Clin Microbiol Infect 17:, 1804–1810. [CrossRef] [PubMed]
    [Google Scholar]
  22. Tenover F. C. , Arbeit R. D. , Goering R. V. , Mickelsen P. A. , Murray B. E. , Persing D. H. , Swaminathan B. . ( 1995; ). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. . J Clin Microbiol 33:, 2233–2239.[PubMed]
    [Google Scholar]
  23. Turton J. F. , Turton S. E. , Yearwood L. , Yarde S. , Kaufmann M. E. , Pitt T. L. . ( 2010; ). Evaluation of a nine-locus variable-number tandem-repeat scheme for typing of Pseudomonas aeruginosa . . Clin Microbiol Infect 16:, 1111–1116. [CrossRef] [PubMed]
    [Google Scholar]
  24. van Belkum A. , Struelens M. , de Visser A. , Verbrugh H. , Tibayrenc M. . ( 2001; ). Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology. . Clin Microbiol Rev 14:, 547–560. [CrossRef] [PubMed]
    [Google Scholar]
  25. Vu-Thien H. , Corbineau G. , Hormigos K. , Fauroux B. , Corvol H. , Clément A. , Vergnaud G. , Pourcel C. . ( 2007; ). Multiple-locus variable-number tandem-repeat analysis for longitudinal survey of sources of Pseudomonas aeruginosa infection in cystic fibrosis patients. . J Clin Microbiol 45:, 3175–3183. [CrossRef] [PubMed]
    [Google Scholar]
  26. Wiehlmann L. , Wagner G. , Cramer N. , Siebert B. , Gudowius P. , Morales G. , Köhler T. , van Delden C. , Weinel C. et al. ( 2007; ). Population structure of Pseudomonas aeruginosa . . Proc Natl Acad Sci U S A 104:, 8101–8106. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.055905-0
Loading
/content/journal/jmm/10.1099/jmm.0.055905-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error