1887

Abstract

The microbiota of the human oropharynx plays an important role in health through involvement in the aetiology of infection and the carriage of adventitious pathogens. Despite this, there are few models available for the preclinical assessment of novel antimicrobials directed to the human throat. We have profiled bacterial consortia sampled from the palatine tonsil and posterior pharyngeal wall microbiotas of healthy adult volunteers ( = 10) using differential culture and 16S rRNA gene sequencing, together with PCR-denaturing gradient gel electrophoresis. The data generated were used to assess the validity of an oropharyngeal microcosm system based on replicated constant-depth film fermenters (CDFFs;  = 5), which were continuously fed using an artificial airway surface liquid. Developed microcosms exhibited significant homology to consortia according to principal components analysis, whilst compositional reproducibility was apparent in replicated models for tonsillar and pharyngeal inocula. Differential viable count data and Shannon–Weiner diversity indices indicated that representative tonsil and pharyngeal model systems achieved dynamic compositional stability about 6 days after inoculation which could be maintained for ≥20 days. In conclusion, the CDFF facilitated the continuous maintenance of bacteriologically stable microcosms that were compositionally similar to inocula.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.055806-0
2013-06-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/6/906.html?itemId=/content/journal/jmm/10.1099/jmm.0.055806-0&mimeType=html&fmt=ahah

References

  1. Aas J. A., Paster B. J., Stokes L. N., Olsen I., Dewhirst F. E.. ( 2005;). Defining the normal bacterial flora of the oral cavity. . J Clin Microbiol 43:, 5721–5732. [CrossRef][PubMed]
    [Google Scholar]
  2. Acharya A., Gurung R., Khanal B., Ghimire A.. ( 2010;). Bacteriology and antibiotic susceptibility pattern of peritonsillar abscess. . JNMA J Nepal Med Assoc 49:, 139–142.[PubMed]
    [Google Scholar]
  3. Ahmed S., Macfarlane G. T., Fite A., McBain A. J., Gilbert P., Macfarlane S.. ( 2007;). Mucosa-associated bacterial diversity in relation to human terminal ileum and colonic biopsy samples. . Appl Environ Microbiol 73:, 7435–7442. [CrossRef][PubMed]
    [Google Scholar]
  4. Busscher H. J., van der Mei H. C.. ( 1995;). Use of flow chamber devices and image analysis methods to study microbial adhesion. . Methods Enzymol 253:, 455–477. [CrossRef][PubMed]
    [Google Scholar]
  5. Busscher H. J., Doornbusch G. I., Van der Mei H. C.. ( 1992;). Adhesion of mutans streptococci to glass with and without a salivary coating as studied in a parallel-plate flow chamber. . J Dent Res 71:, 491–500. [CrossRef][PubMed]
    [Google Scholar]
  6. Hill K. E., Malic S., McKee R., Rennison T., Harding K. G., Williams D. W., Thomas D. W.. ( 2010;). An in vitro model of chronic wound biofilms to test wound dressings and assess antimicrobial susceptibilities. . J Antimicrob Chemother 65:, 1195–1206. [CrossRef][PubMed]
    [Google Scholar]
  7. Hope C. K., Wilson M.. ( 2003;). Measuring the thickness of an outer layer of viable bacteria in an oral biofilm by viability mapping. . J Microbiol Methods 54:, 403–410. [CrossRef][PubMed]
    [Google Scholar]
  8. Hope C. K., Bakht K., Burnside G., Martin G. C., Burnett G., de Josselin de Jong E., Higham S. M.. ( 2012;). Reducing the variability between constant-depth film fermenter experiments when modelling oral biofilm. . J Appl Microbiol 113:, 601–608. [CrossRef][PubMed]
    [Google Scholar]
  9. Hopkins M. J., Englyst H. N., Macfarlane S., Furrie E., Macfarlane G. T., McBain A. J.. ( 2003;). Degradation of cross-linked and non-cross-linked arabinoxylans by the intestinal microbiota in children. . Appl Environ Microbiol 69:, 6354–6360. [CrossRef][PubMed]
    [Google Scholar]
  10. Jeffery P. K., Li D.. ( 1997;). Airway mucosa: secretory cells, mucus and mucin genes. . Eur Respir J 10:, 1655–1662. [CrossRef][PubMed]
    [Google Scholar]
  11. Joris L., Dab I., Quinton P. M.. ( 1993;). Elemental composition of human airway surface fluid in healthy and diseased airways. . Am Rev Respir Dis 148:, 1633–1637. [CrossRef][PubMed]
    [Google Scholar]
  12. Kinniment S. L., Wimpenny J. W., Adams D., Marsh P. D.. ( 1996;). Development of a steady-state oral microbial biofilm community using the constant-depth film fermenter. . Microbiology 142:, 631–638. [CrossRef][PubMed]
    [Google Scholar]
  13. Ledder R. G., Gilbert P., Pluen A., Sreenivasan P. K., De Vizio W., McBain A. J.. ( 2006;). Individual microflora beget unique oral microcosms. . J Appl Microbiol 100:, 1123–1131. [CrossRef][PubMed]
    [Google Scholar]
  14. Lemon K. P., Klepac-Ceraj V., Schiffer H. K., Brodie E. L., Lynch S. V., Kolter R.. ( 2010;). Comparative analyses of the bacterial microbiota of the human nostril and oropharynx. . MBio 1:, e00129–e00110.[PubMed]
    [Google Scholar]
  15. Lillehoj E. R., Kim K. C.. ( 2002;). Airway mucus: its components and function. . Arch Pharm Res 25:, 770–780. [CrossRef][PubMed]
    [Google Scholar]
  16. Marieb E. N., Hoehn K.. ( 2007;). Human Anatomy and Physiology. San Francisco & London:: Pearson Benjamin Cummings;.
    [Google Scholar]
  17. McBain A. J., Bartolo R. G., Catrenich C. E., Charbonneau D., Ledder R. G., Gilbert P.. ( 2003a;). Effects of triclosan-containing rinse on the dynamics and antimicrobial susceptibility of in vitro plaque ecosystems. . Antimicrob Agents Chemother 47:, 3531–3538. [CrossRef][PubMed]
    [Google Scholar]
  18. McBain A. J., Bartolo R. G., Catrenich C. E., Charbonneau D., Ledder R. G., Gilbert P.. ( 2003b;). Growth and molecular characterization of dental plaque microcosms. . J Appl Microbiol 94:, 655–664. [CrossRef][PubMed]
    [Google Scholar]
  19. McBain A. J., Bartolo R. G., Catrenich C. E., Charbonneau D., Ledder R. G., Rickard A. H., Symmons S. A., Gilbert P.. ( 2003c;). Microbial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosms. . Appl Environ Microbiol 69:, 177–185. [CrossRef][PubMed]
    [Google Scholar]
  20. Mertz D., Frei R., Jaussi B., Tietz A., Stebler C., Flückiger U., Widmer A. F.. ( 2007;). Throat swabs are necessary to reliably detect carriers of Staphylococcus aureus. . Clin Infect Dis 45:, 475–477. [CrossRef][PubMed]
    [Google Scholar]
  21. O’Sullivan L. A., Fuller K. E., Thomas E. M., Turley C. M., Fry J. C., Weightman A. J.. ( 2004;). Distribution and culturability of the uncultivated ‘AGG58 cluster’ of the Bacteroidetes phylum in aquatic environments. . FEMS Microbiol Ecol 47:, 359–370. [CrossRef][PubMed]
    [Google Scholar]
  22. Pratten J., Smith A. W., Wilson M.. ( 1998;). Response of single species biofilms and microcosm dental plaques to pulsing with chlorhexidine. . J Antimicrob Chemother 42:, 453–459. [CrossRef][PubMed]
    [Google Scholar]
  23. Pratten J., Pasu M., Jackson G., Flanagan A., Wilson M.. ( 2003;). Modelling oral malodour in a longitudinal study. . Arch Oral Biol 48:, 737–743. [CrossRef][PubMed]
    [Google Scholar]
  24. Rajasuo A., Jousimies-Somer H., Savolainen S., Leppänen J., Murtomaa H., Meurman J. H.. ( 1996;). Bacteriologic findings in tonsillitis and pericoronitis. . Clin Infect Dis 23:, 51–60. [CrossRef][PubMed]
    [Google Scholar]
  25. Ramirez C., Turner J., Chance J. F.. ( 2011;). Non-group A streptococci as common isolates from throat culture among college students with pharyngitis. . J Am Coll Health 59:, 237. [CrossRef][PubMed]
    [Google Scholar]
  26. Sannasiddappa T. H., Costabile A., Gibson G. R., Clarke S. R.. ( 2011;). The influence of Staphylococcus aureus on gut microbial ecology in an in vitro continuous culture human colonic model system. . PLoS ONE 6:, e23227. [CrossRef][PubMed]
    [Google Scholar]
  27. Seaton A., MacNee W., Donaldson K., Godden D.. ( 1995;). Particulate air pollution and acute health effects. . Lancet 345:, 176–178. [CrossRef][PubMed]
    [Google Scholar]
  28. Smith A. R., Macfarlane G. T., Reynolds N., O’May G. A., Bahrami B., Macfarlane S.. ( 2012;). Effect of a synbiotic on microbial community structure in a continuous culture model of the gastric microbiota in enteral nutrition patients. . FEMS Microbiol Ecol 80:, 135–145. [CrossRef][PubMed]
    [Google Scholar]
  29. Thayer J. D., Martin J. E. Jr. ( 1966;). Improved medium selective for cultivation of N. gonorrhoeae and N. meningitidis. . Public Health Rep 81:, 559–562. [CrossRef][PubMed]
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  31. Van de Peer Y., De Wachter R.. ( 1994;). TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. . Comput Appl Biosci 10:, 569–570.[PubMed]
    [Google Scholar]
  32. Van den Abbeele P., Grootaert C., Marzorati M., Possemiers S., Verstraete W., Gérard P., Rabot S., Bruneau A., El Aidy S.. & other authors ( 2010;). Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. . Appl Environ Microbiol 76:, 5237–5246. [CrossRef][PubMed]
    [Google Scholar]
  33. Van Palenstein Helderman W. H., Ijsseldijk M., Huis in ’t Veld J. H.. ( 1983;). A selective medium for the two major subgroups of the bacterium Streptococcus mutans isolated from human dental plaque and saliva. . Arch Oral Biol 28:, 599–603. [CrossRef][PubMed]
    [Google Scholar]
  34. Wang Q., Garrity G. M., Tiedje J. M., Cole J. R.. ( 2007;). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. . Appl Environ Microbiol 73:, 5261–5267. [CrossRef][PubMed]
    [Google Scholar]
  35. Wilson M.. ( 2005;). Microbial Inhabitants of Humans: Their Ecology and Role in Health and Disease. New York:: Cambridge University Press;.
    [Google Scholar]
  36. Wimpenny J. W. T.. ( 1988;). Introduction. . In Handbook of Laboratory Model Systems for Microbial Ecosystems, pp. 1–17. Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  37. Wong L., Sissons C.. ( 2001;). A comparison of human dental plaque microcosm biofilms grown in an undefined medium and a chemically defined artificial saliva. . Arch Oral Biol 46:, 477–486. [CrossRef][PubMed]
    [Google Scholar]
  38. Zaura E., Buijs M. J., Hoogenkamp M. A., Ciric L., Papetti A., Signoretto C., Stauder M., Lingström P., Pratten J.. & other authors ( 2011;). The effects of fractions from shiitake mushroom on composition and cariogenicity of dental plaque microcosms in an in vitro caries model. . J Biomed Biotechnol 2011:, 135034. [CrossRef][PubMed]
    [Google Scholar]
  39. Zautner A. E., Krause M., Stropahl G., Holtfreter S., Frickmann H., Maletzki C., Kreikemeyer B., Pau H. W., Podbielski A.. ( 2010;). Intracellular persisting Staphylococcus aureus is the major pathogen in recurrent tonsillitis. . PLoS ONE 5:, e9452. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.055806-0
Loading
/content/journal/jmm/10.1099/jmm.0.055806-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error