1887

Abstract

The characteristics of carbapenem-resistant (CRPA) isolates from Korea were investigated. Two major clones, clonal complex (CC) 235 and CC641, were identified. CC235, an important international clone, might have been imported recently in Korea as this clone displayed a homogeneous genotype, mutation and antimicrobial resistance profile. While 13 ST235 isolates harboured the gene, which conferred high-level meropenem resistance, CC641 isolates showed high biofilm-forming activity. CC235 and CC641 isolates showed distinct distribution of ferripyoverdine receptor type and virulence markers. While all CC235 isolates were of the IIb type and , CC641 isolates were , and all but one showed the III type. CC235 and CC641 isolates were also characterized by different extracellular protease activity: staphylolysin and elastase activities in CC235 and CC641, respectively. Two major CRPA clones in Korea seem to be predominant, reflecting their selective advantage by virtue of antimicrobial resistance, virulence and biofilm-forming activity.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.055426-0
2013-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/7/1015.html?itemId=/content/journal/jmm/10.1099/jmm.0.055426-0&mimeType=html&fmt=ahah

References

  1. Agnello M., Wong-Beringer A. 2012; Differentiation in quinolone resistance by virulence genotype in Pseudomonas aeruginosa. PLoS ONE 7:e42973 [View Article][PubMed]
    [Google Scholar]
  2. Bodilis J., Ghysels B., Osayande J., Matthijs S., Pirnay J. P., Denayer S., De Vos D., Cornelis P. 2009; Distribution and evolution of ferripyoverdine receptors in Pseudomonas aeruginosa. Environ Microbiol 11:2123–2135 [View Article][PubMed]
    [Google Scholar]
  3. Cholley P., Thouverez M., Hocquet D., van der Mee-Marquet N., Talon D., Bertrand X. 2011; Most multidrug-resistant Pseudomonas aeruginosa isolates from hospitals in eastern France belong to a few clonal types. J Clin Microbiol 49:2578–2583 [View Article][PubMed]
    [Google Scholar]
  4. CLSI (2011). Performance Standards for Antimicrobial Susceptibility Testing, 21st Informational Supplement M100–S21. Wayne, PA: Clinical and Laboratory Standards Institute
  5. Cornelis P., Hohnadel D., Meyer J. M. 1989; Evidence for different pyoverdine‐mediated iron uptake systems among Pseudomonas aeruginosa strains.. Infect Immun 57:3491–3497 [View Article][PubMed]
    [Google Scholar]
  6. Curran B., Jonas D., Grundmann H., Pitt T., Dowson C. G. 2004; Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa.. J Clin Microbiol 42:5644–5649 [View Article][PubMed]
    [Google Scholar]
  7. De Vos D., De Chial M., Cochez C., Jansen S., Tümmler B., Meyer J.M., Cornelis P. 2001; Study of pyoverdine type and production by Pseudomonas aeruginosa isolated from cystic fibrosis patients: prevalence of type II pyoverdine isolates and accumulation of pyoverdine‐negative mutations. Arch Microbiol 175:384–388 [View Article][PubMed]
    [Google Scholar]
  8. García-Castillo M., Del Campo R., Morosini M. I., Riera E., Cabot G., Willems R., van Mansfeld R., Oliver A., Cantón R. 2011; Wide dispersion of ST175 clone despite high genetic diversity of carbapenem-nonsusceptible Pseudomonas aeruginosa clinical strains in 16 Spanish hospitals. J Clin Microbiol 49:2905–2910 [View Article][PubMed]
    [Google Scholar]
  9. Giske C. G., Libisch B., Colinon C., Scoulica E., Pagani L., Füzi M., Kronvall G., Rossolini G. M. 2006; Establishing clonal relationships between VIM-1-like metallo-β-lactamase-producing Pseudomonas aeruginosa strains from four European countries by multilocus sequence typing. J Clin Microbiol 44:4309–4315 [View Article][PubMed]
    [Google Scholar]
  10. Goodman A. L., Lory S. 2004; Analysis of regulatory networks in Pseudomonas aeruginosa by genomewide transcriptional profiling. Curr Opin Microbiol 7:39–44 [View Article][PubMed]
    [Google Scholar]
  11. Handfield M., Lehoux D. E., Sanschagrin F., Mahan M.J., Woods D.E., Levesque R.C. 2000; In vivo‐induced genes in Pseudomonas aeruginosa. Infect Immun 68:2359–2362 [View Article][PubMed]
    [Google Scholar]
  12. Kaszab E., Szoboszlay S., Dobolyi C., Háhn J., Pék N., Kriszt B. 2011; Antibiotic resistance profiles and virulence markers of Pseudomonas aeruginosa strains isolated from composts. Bioresour Technol 102:1543–1548 [View Article][PubMed]
    [Google Scholar]
  13. Kitao T., Tada T., Tanaka M., Narahara K., Shimojima M., Shimada K., Miyoshi-Akiyama T., Kirikae T. 2012; Emergence of a novel multidrug-resistant Pseudomonas aeruginosa strain producing IMP-type metallo-β-lactamases and AAC(6′)-Iae in Japan. Int J Antimicrob Agents 39:518–521 [View Article][PubMed]
    [Google Scholar]
  14. Kulasekara B. R., Kulasekara H. D., Wolfgang M. C., Stevens L., Frank D. W., Lory S. 2006; Acquisition and evolution of the exoU locus in Pseudomonas aeruginosa. J Bacteriol 188:4037–4050 [View Article][PubMed]
    [Google Scholar]
  15. Lee J. Y., Ko K. S. 2012; OprD mutations and inactivation, expression of efflux pumps and AmpC, and metallo-β-lactamases in carbapenem-resistant Pseudomonas aeruginosa isolates from South Korea. Int J Antimicrob Agents 40:168–172 [View Article][PubMed]
    [Google Scholar]
  16. Lin H. H., Huang S. P., Teng H. C., Ji D. D., Chen Y. S., Chen Y. L. 2006; Presence of the exoU gene of Pseudomonas aeruginosa is correlated with cytotoxicity in MDCK cells but not with colonization in BALB/c mice. J Clin Microbiol 44:4596–4597 [View Article][PubMed]
    [Google Scholar]
  17. Maatallah M., Cheriaa J., Backhrouf A., Iversen A., Grundmann H., Do T., Lanotte P., Mastouri M., Elghmati M. S. et al. 2011; Population structure of Pseudomonas aeruginosa from five Mediterranean countries: evidence for frequent recombination and epidemic occurrence of CC235. PLoS ONE 6:e25617 [View Article][PubMed]
    [Google Scholar]
  18. Merritt J. H., Kadouri D. E., O'Toole G. A. 2005; Growing and analyzing static biofilms. In Current Protocols in Microbiology pp. 1B.1.1–1B.1.17 Edited by Coico R., Kowalik T., Quarles J., Stevenson B., Taylor R. Hoboken, NJ: Wiley;
    [Google Scholar]
  19. Meyer J. M., Neely A., Stintzi A., Georges C., Holder I. A. 1996; Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect Immun 64:518–523 [View Article][PubMed]
    [Google Scholar]
  20. Meyer J. M., Stintzi A., De Vos D., Cornelis P., Tappe R., Taraz K., Budzikiewicz H. 1997; Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology 143:35–43 [View Article][PubMed]
    [Google Scholar]
  21. Murray T. S., Kazmierczak B. I. 2006; FlhF is required for swimming and swarming in Pseudomonas aeruginosa. J Bacteriol 188:6995–7004 [View Article][PubMed]
    [Google Scholar]
  22. Nemec A., Krizova L., Maixnerova M., Musilek M. 2010; Multidrug-resistant epidemic clones among bloodstream isolates of Pseudomonas aeruginosa in the Czech Republic. Res Microbiol 161:234–242 [View Article][PubMed]
    [Google Scholar]
  23. Poole K. 2011; Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2:65 [View Article][PubMed]
    [Google Scholar]
  24. Seok Y., Bae I. K., Jeong S. H., Kim S. H., Lee H., Lee K. 2011; Dissemination of IMP-6 metallo-β-lactamase-producing Pseudomonas aeruginosa sequence type 235 in Korea. J Antimicrob Chemother 66:2791–2796 [View Article][PubMed]
    [Google Scholar]
  25. Shaver C. M., Hauser A. R. 2004; Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect Immun 72:6969–6977 [View Article][PubMed]
    [Google Scholar]
  26. Shigemoto N., Kuwahara R., Kayama S., Shimizu W., Onodera M., Yokozaki M., Hisatsune J., Kato F., Ohge H., Sugai M. 2012; Emergence in Japan of an imipenem-susceptible, meropenem-resistant Klebsiella pneumoniae carrying blaIMP-6.. Diagn Microbiol Infect Dis 72:109–112 [View Article][PubMed]
    [Google Scholar]
  27. Struelens M. J., Rost F., Deplano A., Maas A., Schwam V., Serruys E., Cremer M. 1993; Pseudomonas aeruginosa and Enterobacteriaceae bacteremia after biliary endoscopy: an outbreak investigation using DNA macrorestriction analysis. Am J Med 95:489–498 [View Article][PubMed]
    [Google Scholar]
  28. Szmolka A., Cramer N., Nagy B. 2012; Comparative genomic analysis of bovine, environmental, and human strains of Pseudomonas aeruginosa. FEMS Microbiol Lett 335:113–122 [View Article][PubMed]
    [Google Scholar]
  29. Tingpej P., Smith L., Rose B., Zhu H., Conibear T., Al Nassafi K., Manos J., Elkins M., Bye P. et al. 2007; Phenotypic characterization of clonal and nonclonal Pseudomonas aeruginosa strains isolated from lungs of adults with cystic fibrosis. J Clin Microbiol 45:1697–1704 [View Article][PubMed]
    [Google Scholar]
  30. Twining S. S., Kirschner S. E., Mahnke L. A., Frank D. W. 1993; Effect of Pseudomonas aeruginosa elastase, alkaline protease, and exotoxin A on corneal proteinases and proteins. Invest Ophthalmol Vis Sci 34:2699–2712[PubMed]
    [Google Scholar]
  31. Wiehlmann L., Wagner G., Cramer N., Siebert B., Gudowius P., Morales G., Köhler T., van Delden C., Weinel C. et al. 2007; Population structure of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 104:8101–8106 [View Article][PubMed]
    [Google Scholar]
  32. Yan J. J., Hsueh P. R., Ko W. C., Luh K. T., Tsai S. H., Wu H. M., Wu J. J. 2001; Metallo-beta-lactamases in clinical Pseudomonas isolates in Taiwan and identification of VIM-3, a novel variant of the VIM-2 enzyme. Antimicrob Agents Chemother 45:2224–2228 [View Article][PubMed]
    [Google Scholar]
  33. Yano H., Kuga A., Okamoto R., Kitasato H., Kobayashi T., Inoue M. 2001; Plasmid-encoded metallo-beta-lactamase (IMP-6) conferring resistance to carbapenems, especially meropenem. Antimicrob Agents Chemother 45:1343–1348 [View Article][PubMed]
    [Google Scholar]
  34. Yoo J. S., Yang J. W., Kim H. M., Byeon J., Kim H. S., Yoo J. I., Chung G. T., Lee Y. S. 2012; Dissemination of genetically related IMP-6-producing multidrug-resistant Pseudomonas aeruginosa ST235 in South Korea. Int J Antimicrob Agents 39:300–304 [View Article][PubMed]
    [Google Scholar]
  35. Zhu H., Thuruthyil S. J., Willcox M. D. 2001; Production of N-acyl homoserine lactones by gram-negative bacteria isolated from contact lens wearers. Clin Experiment Ophthalmol 29:150–152 [View Article][PubMed]
    [Google Scholar]
  36. Zhu H., Thuruthyil S. J., Willcox M. D. 2002; Determination of quorum-sensing signal molecules and virulence factors of Pseudomonas aeruginosa isolates from contact lens-induced microbial keratitis. J Med Microbiol 51:1063–1070[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.055426-0
Loading
/content/journal/jmm/10.1099/jmm.0.055426-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error