1887

Abstract

The co-existence of carbapenemase, 16S rRNA methylase and mutated quinolone resistance-determining regions (QRDRs) can cause serious difficulty in treating infections with multidrug-resistant In this study, we aimed to determine the mechanisms of imipenem, amikacin and ciprofloxacin resistance in isolates with resistance to these antibiotics. A total of 31 non-duplicate isolates of amikacin- and ciprofloxacin-resistant isolates were identified from April to August 2010 from a single hospital in South Korea. To assess the clonal relatedness of the 31 isolates, multilocus sequence typing, network phylogenetic analysis and enterobacterial repetitive intergenic consensus-PCR were utilized. Detection of OXA-type carbapenemase and 16S rRNA methylase was conducted using a multiplex PCR assay. The QRDRs of the and genes were amplified and sequenced. The result showed that 30/31 isolates harboured the -like carbapenemase, which made them resistant to imipenem (MICs ≥16 µg ml). Twenty-eight of the 31 isolates were found to possess , a 16S rRNA methylase gene, and showed resistance to amikacin, arbekacin, gentamicin and tobramycin (MICs >256 µg ml). All of the isolates were determined to carry QRDR mutations in both and : a Ser83Leu substitution in and a Ser80Leu substitution in , causing a ciprofloxacin MIC ≥64 µg ml. In conclusion, with co-existence of carbapenemase, 16S rRNA methylase and mutated QRDRs are extremely prevalent in South Korea, which may cause serious problems in the treatment of infections using carbapenem, amikacin and ciprofloxacin.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.055384-0
2013-06-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/6/836.html?itemId=/content/journal/jmm/10.1099/jmm.0.055384-0&mimeType=html&fmt=ahah

References

  1. Apisarnthanarak A., Mundy L. M.. ( 2009;). Mortality associated with Pandrug-resistant Acinetobacter baumannii infections in Thailand. . Am J Infect Control 37:, 519–520. [CrossRef][PubMed]
    [Google Scholar]
  2. Bandelt H. J., Forster P., Röhl A.. ( 1999;). Median-joining networks for inferring intraspecific phylogenies. . Mol Biol Evol 16:, 37–48. [CrossRef][PubMed]
    [Google Scholar]
  3. Bartual S. G., Seifert H., Hippler C., Luzon M. A., Wisplinghoff H., Rodríguez-Valera F.. ( 2005;). Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. . J Clin Microbiol 43:, 4382–4390. [CrossRef][PubMed]
    [Google Scholar]
  4. Bogaerts P., Galimand M., Bauraing C., Deplano A., Vanhoof R., De Mendonca R., Rodriguez-Villalobos H., Struelens M., Glupczynski Y.. ( 2007;). Emergence of ArmA and RmtB aminoglycoside resistance 16S rRNA methylases in Belgium. . J Antimicrob Chemother 59:, 459–464. [CrossRef][PubMed]
    [Google Scholar]
  5. Brigante G., Migliavacca R., Bramati S., Motta E., Nucleo E., Manenti M., Migliorino G., Pagani L., Luzzaro F., Viganò F. E.. ( 2012;). Emergence and spread of a multidrug-resistant Acinetobacter baumannii clone producing both the carbapenemase OXA-23 and the 16S rRNA methylase ArmA. . J Med Microbiol 61:, 653–661. [CrossRef][PubMed]
    [Google Scholar]
  6. CLSI (2012). Performance Standards for Antimicrobial Disk Diffusion Susceptibility Tests; 22nd Informational Supplement, Approved Standard M100-S22. Wayne, PA: Clinical and Laboratory Standards Institute.
  7. Deccache Y., Irenge L. M., Savov E., Ariciuc M., Macovei A., Trifonova A., Gergova I., Ambroise J., Vanhoof R., Gala J. L.. ( 2011;). Development of a pyrosequencing assay for rapid assessment of quinolone resistance in Acinetobacter baumannii isolates. . J Microbiol Methods 86:, 115–118. [CrossRef][PubMed]
    [Google Scholar]
  8. Diancourt L., Passet V., Nemec A., Dijkshoorn L., Brisse S.. ( 2010;). The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. . PLoS ONE 5:, e10034. [CrossRef][PubMed]
    [Google Scholar]
  9. Doi Y., Arakawa Y.. ( 2007;). 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. . Clin Infect Dis 45:, 88–94. [CrossRef][PubMed]
    [Google Scholar]
  10. Doi Y., Yokoyama K., Yamane K., Wachino J., Shibata N., Yagi T., Shibayama K., Kato H., Arakawa Y.. ( 2004;). Plasmid-mediated 16S rRNA methylase in Serratia marcescens conferring high-level resistance to aminoglycosides. . Antimicrob Agents Chemother 48:, 491–496. [CrossRef][PubMed]
    [Google Scholar]
  11. Doi Y., de Oliveira Garcia D., Adams J., Paterson D. L.. ( 2007;). Coproduction of novel 16S rRNA methylase RmtD and metallo-β-lactamase SPM-1 in a panresistant Pseudomonas aeruginosa isolate from Brazil. . Antimicrob Agents Chemother 51:, 852–856. [CrossRef][PubMed]
    [Google Scholar]
  12. Feil E. J., Li B. C., Aanensen D. M., Hanage W. P., Spratt B. G.. ( 2004;). eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. . J Bacteriol 186:, 1518–1530. [CrossRef][PubMed]
    [Google Scholar]
  13. Galimand M., Courvalin P., Lambert T.. ( 2003;). Plasmid-mediated high-level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation. . Antimicrob Agents Chemother 47:, 2565–2571. [CrossRef][PubMed]
    [Google Scholar]
  14. Gerner-Smidt P., Tjernberg I.. ( 1993;). Acinetobacter in Denmark: II. Molecular studies of the Acinetobacter calcoaceticusAcinetobacter baumannii complex. . APMIS 101:, 826–832. [CrossRef][PubMed]
    [Google Scholar]
  15. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  16. Higgins P. G., Dammhayn C., Hackel M., Seifert H.. ( 2010;). Global spread of carbapenem-resistant Acinetobacter baumannii. . J Antimicrob Chemother 65:, 233–238. [CrossRef][PubMed]
    [Google Scholar]
  17. Jeon B.-C., Jeong S. H., Bae I. K., Kwon S. B., Lee K., Young D., Lee J. H., Song J. S., Lee S. H.. ( 2005;). Investigation of a nosocomial outbreak of imipenem-resistant Acinetobacter baumannii producing the OXA-23 β-lactamase in Korea. . J Clin Microbiol 43:, 2241–2245. [CrossRef][PubMed]
    [Google Scholar]
  18. Jeong H. W., Son B. R., Shin D. I., Ryu D., Hong S. B., Han K., Shin K. S.. ( 2011;). Characterization of Acinetobacter baumannii co-producing carbapenemases OXA-23 and OXA-66, and armA 16S ribosomal RNA methylase at a university hospital in South Korea. . Korean J Clin Microbiol 14:, 67–73. [CrossRef]
    [Google Scholar]
  19. Jeong S. H., Bae I. K., Park K. O., An Y. J., Sohn S. G., Jang S. J., Sung K. H., Yang K. S., Lee K.. & other authors ( 2006;). Outbreaks of imipenem-resistant Acinetobacter baumannii producing carbapenemases in Korea. . J Microbiol 44:, 423–431.[PubMed]
    [Google Scholar]
  20. Karah N., Sundsfjord A., Towner K., Samuelsen O.. ( 2012;). Insights into the global molecular epidemiology of carbapenem non-susceptible clones of Acinetobacter baumannii. . Drug Resist Updat 15:, 237–247. [CrossRef][PubMed]
    [Google Scholar]
  21. Kim C.-K., Lee Y., Lee H., Woo G.-J., Song W., Kim M.-N., Lee W.-G., Jeong S. H., Lee K., Chong Y.. ( 2010;). Prevalence and diversity of carbapenemases among imipenem-nonsusceptible Acinetobacter isolates in Korea: emergence of a novel OXA-182. . Diagn Microbiol Infect Dis 68:, 432–438. [CrossRef][PubMed]
    [Google Scholar]
  22. Kim J. W., Heo S. T., Jin J. S., Choi C. H., Lee Y. C., Jeong Y. G., Kim S.-J., Lee J. C.. ( 2008;). Characterization of Acinetobacter baumannii carrying blaOXA-23, blaPER-1 and armA in a Korean hospital. . Clin Microbiol Infect 14:, 716–718. [CrossRef][PubMed]
    [Google Scholar]
  23. Lee H., Yong D., Yum J. H., Roh K. H., Lee K., Yamane K., Arakawa Y., Chong Y.. ( 2006;). Dissemination of 16S rRNA methylase-mediated highly amikacin-resistant isolates of Klebsiella pneumoniae and Acinetobacter baumannii in Korea. . Diagn Microbiol Infect Dis 56:, 305–312. [CrossRef][PubMed]
    [Google Scholar]
  24. Lee K., Lim Y. S., Yong D., Yum J. H., Chong Y.. ( 2003;). Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. . J Clin Microbiol 41:, 4623–4629. [CrossRef][PubMed]
    [Google Scholar]
  25. Lee K., Kim M.-N., Choi T. Y., Cho S.-E., Lee S., Whang D. H., Yong D., Chong Y., Woodford N., Livermore D. M..KONSAR Group ( 2009;). Wide dissemination of OXA-type carbapenemases in clinical Acinetobacter spp. isolates from South Korea. . Int J Antimicrob Agents 33:, 520–524. [CrossRef][PubMed]
    [Google Scholar]
  26. Lee K., Kim M.-N., Kim J.-S., Hong H. L., Kang J. O., Shin J.-H., Park Y.-J., Yong D., Jeong S. H., Chong Y..KONSAR Group ( 2011;). Further increases in carbapenem-, amikacin-, and fluoroquinolone-resistant isolates of Acinetobacter spp. and P. aeruginosa in Korea: KONSAR study 2009. . Yonsei Med J 52:, 793–802. [CrossRef][PubMed]
    [Google Scholar]
  27. Liu Y.-H., Kuo S.-C., Lee Y.-T., Chang I. C., Yang S.-P., Chen T.-L., Fung C.-P.. ( 2012;). Amino acid substitutions of quinolone resistance determining regions in GyrA and ParC associated with quinolone resistance in Acinetobacter baumannii and Acinetobacter genomic species 13TU. . J Microbiol Immunol Infect 45:, 108–112. [CrossRef][PubMed]
    [Google Scholar]
  28. Mugnier P. D., Poirel L., Naas T., Nordmann P.. ( 2010;). Worldwide dissemination of the blaOXA-23 carbapenemase gene of Acinetobacter baumannii. . Emerg Infect Dis 16:, 35–40. [CrossRef][PubMed]
    [Google Scholar]
  29. Munoz-Price L. S., Weinstein R. A.. ( 2008;). Acinetobacter infection. . N Engl J Med 358:, 1271–1281. [CrossRef][PubMed]
    [Google Scholar]
  30. Park Y. K., Choi J. Y., Jung S.-I., Park K.-H., Lee H., Jung D. S., Heo S. T., Kim S.-W., Chang H.-H.. & other authors ( 2009;). Two distinct clones of carbapenem-resistant Acinetobacter baumannii isolates from Korean hospitals. . Diagn Microbiol Infect Dis 64:, 389–395. [CrossRef][PubMed]
    [Google Scholar]
  31. Peleg A. Y., Seifert H., Paterson D. L.. ( 2008;). Acinetobacter baumannii: emergence of a successful pathogen. . Clin Microbiol Rev 21:, 538–582. [CrossRef][PubMed]
    [Google Scholar]
  32. Ruiz J.. ( 2003;). Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. . J Antimicrob Chemother 51:, 1109–1117. [CrossRef][PubMed]
    [Google Scholar]
  33. Segal H., Garny S., Elisha B. G.. ( 2005;). Is ISABA-1 customized for Acinetobacter?. FEMS Microbiol Lett 243:, 425–429. [CrossRef][PubMed]
    [Google Scholar]
  34. Sheng W.-H., Lin Y.-C., Wang J.-T., Chen Y.-C., Chang S.-C., Hsia K.-C., Wu R.-J., Li S.-Y.. ( 2009;). Identification of distinct ciprofloxacin susceptibility in Acinetobacter spp. by detection of the gyrA gene mutation using real-time PCR. . Mol Cell Probes 23:, 154–156. [CrossRef][PubMed]
    [Google Scholar]
  35. Stietz M. S., Ramírez M. S., Vilacoba E., Merkier A. K., Limansky A. S., Centrón D., Catalano M.. ( 2013;). Acinetobacter baumannii extensively drug resistant lineages in Buenos Aires hospitals differ from the international clones I–III. . Infect Genet Evol 14:, 294–301. [CrossRef][PubMed]
    [Google Scholar]
  36. Sung J. Y., Kwon K. C., Cho H. H., Koo S. H.. ( 2011;). Antimicrobial resistance determinants in imipenem-nonsusceptible Acinetobacter calcoaceticusbaumannii complex isolated in Daejeon, Korea. . Korean J Lab Med 31:, 265–270. [CrossRef][PubMed]
    [Google Scholar]
  37. Turton J. F., Woodford N., Glover J., Yarde S., Kaufmann M. E., Pitt T. L.. ( 2006;). Identification of Acinetobacter baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species. . J Clin Microbiol 44:, 2974–2976. [CrossRef][PubMed]
    [Google Scholar]
  38. Valenzuela J. K., Thomas L., Partridge S. R., van der Reijden T., Dijkshoorn L., Iredell J.. ( 2007;). Horizontal gene transfer in a polyclonal outbreak of carbapenem-resistant Acinetobacter baumannii. . J Clin Microbiol 45:, 453–460. [CrossRef][PubMed]
    [Google Scholar]
  39. Vila J., Ruiz J., Goñi P., Marcos A., Jimenez de Anta T.. ( 1995;). Mutation in the gyrA gene of quinolone-resistant clinical isolates of Acinetobacter baumannii. . Antimicrob Agents Chemother 39:, 1201–1203. [CrossRef][PubMed]
    [Google Scholar]
  40. Villegas M. V., Hartstein A. I.. ( 2003;). Acinetobacter outbreaks, 1977–2000. . Infect Control Hosp Epidemiol 24:, 284–295. [CrossRef][PubMed]
    [Google Scholar]
  41. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  42. Wilks M., Wilson A., Warwick S., Price E., Kennedy D., Ely A., Millar M. R.. ( 2006;). Control of an outbreak of multidrug-resistant Acinetobacter baumanniicalcoaceticus colonization and infection in an intensive care unit (ICU) without closing the ICU or placing patients in isolation. . Infect Control Hosp Epidemiol 27:, 654–658. [CrossRef][PubMed]
    [Google Scholar]
  43. Woodford N., Ellington M. J., Coelho J. M., Turton J. F., Ward M. E., Brown S., Amyes S. G., Livermore D. M.. ( 2006;). Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. . Int J Antimicrob Agents 27:, 351–353. [CrossRef][PubMed]
    [Google Scholar]
  44. Yan J.-J., Wu J.-J., Ko W.-C., Tsai S.-H., Chuang C.-L., Wu H.-M., Lu Y.-J., Li J.-D.. ( 2004;). Plasmid-mediated 16S rRNA methylases conferring high-level aminoglycoside resistance in Escherichia coli and Klebsiella pneumoniae isolates from two Taiwanese hospitals. . J Antimicrob Chemother 54:, 1007–1012. [CrossRef][PubMed]
    [Google Scholar]
  45. Yokoyama K., Doi Y., Yamane K., Kurokawa H., Shibata N., Shibayama K., Yagi T., Kato H., Arakawa Y.. ( 2003;). Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. . Lancet 362:, 1888–1893. [CrossRef][PubMed]
    [Google Scholar]
  46. Zhao W. S., Liu G. Y., Mi Z. H., Zhang F.. ( 2011;). Coexistence of blaOXA-23 with armA and novel gyrA mutation in a pandrug-resistant Acinetobacter baumannii isolate from the blood of a patient with haematological disease in China. . J Hosp Infect 77:, 278–279. [CrossRef][PubMed]
    [Google Scholar]
  47. Zong Z., X., Valenzuela J. K., Partridge S. R., Iredell J.. ( 2008;). An outbreak of carbapenem-resistant Acinetobacter baumannii producing OXA-23 carbapenemase in western China. . Int J Antimicrob Agents 31:, 50–54. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.055384-0
Loading
/content/journal/jmm/10.1099/jmm.0.055384-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error