with the //IS genotype and protein or protein/extracellular-DNA biofilm is frequent in ocular infections Free

Abstract

In ocular infections (OIs) caused by , biofilms composed mainly of poly--acetylglucosamine (PNAG) have been widely studied, but PNAG-independent biofilms have not. Therefore, we searched for a relationship between the operon (involved in PNAG-biofilm) and the biochemical composition of biofilms in isolates from OI. Isolates from OI ( = 62), from healthy conjunctiva (HC;  = 45) and from healthy skin (HS;  = 53), were used to detect and genes, and the insertion sequence 256 (IS) using PCR. The compositions of the biofilms were determined by treatment with NaIO, proteinase K and DNase I. Multilocus sequence typing (MLST) was performed to characterize the isolates, and the expression of and genes was determined by real-time qPCR. A strong relationship between the / /IS genotype and protein- or protein/extracellular DNA (eDNA)-biofilm composition was found in the isolates from OI (53.6 %), whereas the / /IS genotype and carbohydrate-biofilm was most prevalent in isolates from HC (25 %) and HS (25 %). Isolates with an / /IS genotype and protein-biofilm phenotype were predominantly of the ST2 lineage, while carbohydrate-biofilm-producing strains were mainly of the ST9 lineage. The protein-biofilm-producing strains had higher expression levels of gene than carbohydrate-biofilm-producing strains; while gene did not have the same pattern of expression. These results suggest that strains with //IS genotype and protein- or protein/eDNA-biofilms have a stronger ability to establish in the eye than strains with //IS genotype and PNAG-biofilms.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.055210-0
2013-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/10/1579.html?itemId=/content/journal/jmm/10.1099/jmm.0.055210-0&mimeType=html&fmt=ahah

References

  1. Arrecubieta C., Lee M. H., Macey A., Foster T. J., Lowy F. D. 2007; SdrF, a Staphylococcus epidermidis surface protein, binds type I collagen. J Biol Chem 282:18767–18776 [View Article][PubMed]
    [Google Scholar]
  2. Baillif S., Ecochard R., Casoli E., Freney J., Burillon C., Kodjikian L. J. 2008; Adherence and kinetics of biofilm formation of Staphylococcus epidermidis to different types of intraocular lenses under dynamic flow conditions. J Cataract Refract Surg 34:153–158 [View Article][PubMed]
    [Google Scholar]
  3. Banner M. A., Cunniffe J. G., Macintosh R. L., Foster T. J., Rohde H., Mack D., Hoyes E., Derrick J., Upton M., Handley P. S. 2007; Localized tufts of fibrils on Staphylococcus epidermidis NCTC 11047 are comprised of the accumulation-associated protein. J Bacteriol 189:2793–2804 [View Article][PubMed]
    [Google Scholar]
  4. Catalanotti P., Lanza M., Del Prete A., Lucido M., Catania M. R., Gallè F., Boggia D., Perfetto B., Rossano F. 2005; Slime-producing Staphylococcus epidermidis and S. aureus in acute bacterial conjunctivitis in soft contact lens wearers. New Microbiol 28:345–354[PubMed]
    [Google Scholar]
  5. Christensen G. D., Simpson W. A., Younger J. J., Baddour L. M., Barrett F. F., Melton D. M., Beachey E. H. 1985; Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006[PubMed]
    [Google Scholar]
  6. Christner M., Franke G. C., Schommer N. N., Wendt U., Wegert K., Pehle P., Kroll G., Schulze C., Buck F. other authors 2010; The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol Microbiol 75:187–207 [View Article][PubMed]
    [Google Scholar]
  7. Conlan S., Mijares L. A., NISC Comparative Sequencing Program,, Becker J., Blakesley R. W., Bouffard G. G., Brooks S., Coleman H., Gupta J. other authors 2012; Staphylococcus epidermidis pan-genome sequence analysis reveals diversity of skin commensal and hospital infection-associated isolates. Genome Biol 13:R64 [View Article][PubMed]
    [Google Scholar]
  8. Conlon K. M., Humphreys H., O’Gara J. P. 2002; icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. . J Bacteriol 184:4400–4408 [View Article][PubMed]
    [Google Scholar]
  9. Conrad A., Suutari M. K., Keinänen M. M., Cadoret A., Faure P., Mansuy-Huault L., Block J. C. 2003; Fatty acids of lipid fractions in extracellular polymeric substances of activated sludge flocs. Lipids 38:1093–1105 [View Article][PubMed]
    [Google Scholar]
  10. Costerton J. W., Stewart P. S., Greenberg E. P. 1999; Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322 [View Article][PubMed]
    [Google Scholar]
  11. Cue D., Lei M. G., Luong T. T., Kuechenmeister L., Dunman P. M., O’Donnell S., Rowe S., O’Gara J. P., Lee C. Y. 2009; Rbf promotes biofilm formation by Staphylococcus aureus via repression of icaR, a negative regulator of icaADBC. J Bacteriol 191:6363–6373 [View Article][PubMed]
    [Google Scholar]
  12. Duggirala A., Kenchappa P., Sharma S., Peeters J. K., Ahmed N., Garg P., Das T., Hasnain S. E. 2007; High-resolution genome profiling differentiated Staphylococcus epidermidis isolated from patients with ocular infections and normal individuals. Invest Ophthalmol Vis Sci 48:3239–3245 [View Article][PubMed]
    [Google Scholar]
  13. Frølund B., Palmgren R., Keiding K., Nielsen P. H. 1996; Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30:1749–1758 [View Article]
    [Google Scholar]
  14. Gerke C., Kraft A., Süssmuth R., Schweitzer O., Götz F. 1998; Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem 273:18586–18593 [View Article][PubMed]
    [Google Scholar]
  15. Hartford O., O’Brien L., Schofield K., Wells J., Foster T. J. 2001; The Fbe (SdrG) protein of Staphylococcus epidermidis HB promotes bacterial adherence to fibrinogen. Microbiology 147:2545–2552[PubMed]
    [Google Scholar]
  16. Heilmann C., Schweitzer O., Gerke C., Vanittanakom N., Mack D., Götz F. 1996; Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. . Mol Microbiol 20:1083–1091 [View Article][PubMed]
    [Google Scholar]
  17. Heilmann C., Hussain M., Peters G., Götz F. 1997; Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24:1013–1024 [View Article][PubMed]
    [Google Scholar]
  18. Heilmann C., Thumm G., Chhatwal G. S., Hartleib J., Uekötter A., Peters G. 2003; Identification and characterization of a novel autolysin (Aae) with adhesive properties from Staphylococcus epidermidis. . Microbiology 149:2769–2778 [View Article][PubMed]
    [Google Scholar]
  19. Hussain M., Herrmann M., von Eiff C., Perdreau-Remington F., Peters G. A. 1997; A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect Immun 65:519–524[PubMed]
    [Google Scholar]
  20. Izano E. A., Amarante M. A., Kher W. B., Kaplan J. B. 2008; Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 74:470–476 [View Article][PubMed]
    [Google Scholar]
  21. Jefferson K. K., Pier D. B., Goldmann D. A., Pier G. B. 2004; The teicoplanin-associated locus regulator (TcaR) and the intercellular adhesin locus regulator (IcaR) are transcriptional inhibitors of the ica locus in Staphylococcus aureus. . J Bacteriol 186:2449–2456 [View Article][PubMed]
    [Google Scholar]
  22. Juárez-Verdayes M. A., Reyes-López M. A., Cancino-Díaz M. E., Muñoz-Salas S., Rodríguez-Martínez S., de la Serna F. J., Hernández-Rodríguez C. H., Cancino-Díaz J. C. 2006; Isolation, vancomycin resistance and biofilm production of Staphylococcus epidermidis from patients with conjunctivitis, corneal ulcers, and endophthalmitis. Rev Latinoam Microbiol 48:238–246[PubMed]
    [Google Scholar]
  23. Kogan G., Sadovskaya I., Chaignon P., Chokr A., Jabbouri S. 2006; Biofilms of clinical strains of Staphylococcus that do not contain polysaccharide intercellular adhesin. FEMS Microbiol Lett 255:11–16 [View Article][PubMed]
    [Google Scholar]
  24. Kozitskaya S., Cho S. H., Dietrich K., Marre R., Naber K., Ziebuhr W. 2004; The bacterial insertion sequence element IS256 occurs preferentially in nosocomial Staphylococcus epidermidis isolates: association with biofilm formation and resistance to aminoglycosides. Infect Immun 72:1210–1215 [View Article][PubMed]
    [Google Scholar]
  25. Li M., Wang X., Gao Q., Lu Y. 2009; Molecular characterization of Staphylococcus epidermidis strains isolated from a teaching hospital in Shanghai, China. J Med Microbiol 58:456–461 [View Article][PubMed]
    [Google Scholar]
  26. Macintosh R. L., Brittan J. L., Bhattacharya R., Jenkinson H. F., Derrick J., Upton M., Handley P. S. 2009; The terminal A domain of the fibrillar accumulation-associated protein (Aap) of Staphylococcus epidermidis mediates adhesion to human corneocytes. J Bacteriol 191:7007–7016 [View Article][PubMed]
    [Google Scholar]
  27. Mack D., Fischer W., Krokotsch A., Leopold K., Hartmann R., Egge H., Laufs R. 1996; The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178:175–183[PubMed]
    [Google Scholar]
  28. National Nosocomial Infections Surveillance System 2004; National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 32:470–485 [View Article][PubMed]
    [Google Scholar]
  29. Pamp S. J., Frees D., Engelmann S., Hecker M., Ingmer H. 2006; Spx is a global effector impacting stress tolerance and biofilm formation in Staphylococcus aureus. . J Bacteriol 188:4861–4870 [View Article][PubMed]
    [Google Scholar]
  30. Patel J. D., Colton E., Ebert M., Anderson J. M. 2012; Gene expression during S. epidermidis biofilm formation on biomaterials. J Biomed Mater Res A 100:2863–2869[PubMed] [CrossRef]
    [Google Scholar]
  31. Ravaioli S., Campoccia D., Visai L., Pirini V., Cangini I., Corazzari T., Maso A., Poggio C., Pegreffi F. other authors 2011; Biofilm extracellular-DNA in 55 Staphylococcus epidermidis clinical isolates from implant infections. Int J Artif Organs 34:840–846 [View Article][PubMed]
    [Google Scholar]
  32. Rice K. C., Mann E. E., Endres J. L., Weiss E. C., Cassat J. E., Smeltzer M. S., Bayles K. W. 2007; The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. . Proc Natl Acad Sci U S A 104:8113–8118 [View Article][PubMed]
    [Google Scholar]
  33. Rohde H., Burdelski C., Bartscht K., Hussain M., Buck F., Horstkotte M. A., Knobloch J. K., Heilmann C., Herrmann M., Mack D. 2005; Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol 55:1883–1895 [View Article][PubMed]
    [Google Scholar]
  34. Rohde H., Burandt E. C., Siemssen N., Frommelt L., Burdelski C., Wurster S., Scherpe S., Davies A. P., Harris L. G. other authors 2007; Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 28:1711–1720 [View Article][PubMed]
    [Google Scholar]
  35. Ryder C., Byrd M., Wozniak D. J. 2007; Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 10:644–648 [View Article][PubMed]
    [Google Scholar]
  36. Suzuki T., Kawamura Y., Uno T., Ohashi Y., Ezaki T. 2005; Prevalence of Staphylococcus epidermidis strains with biofilm-forming ability in isolates from conjunctiva and facial skin. Am J Ophthalmol 140:844–850, 850.e1 [View Article][PubMed]
    [Google Scholar]
  37. Thomas J. C., Vargas M. R., Miragaia M., Peacock S. J., Archer G. L., Enright M. C. 2007; Improved multilocus sequence typing scheme for Staphylococcus epidermidis. . J Clin Microbiol 45:616–619 [View Article][PubMed]
    [Google Scholar]
  38. Tormo M. A., Knecht E., Götz F., Lasa I., Penadés J. R. 2005; Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer?. Microbiology 151:2465–2475 [View Article][PubMed]
    [Google Scholar]
  39. Ulrich M., Bastian M., Cramton S. E., Ziegler K., Pragman A. A., Bragonzi A., Memmi G., Wolz C., Schlievert P. M. other authors 2007; The staphylococcal respiratory response regulator SrrAB induces ica gene transcription and polysaccharide intercellular adhesin expression, protecting Staphylococcus aureus from neutrophil killing under anaerobic growth conditions. Mol Microbiol 65:1276–1287 [View Article][PubMed]
    [Google Scholar]
  40. Vacheethasanee K., Temenoff J. S., Higashi J. M., Gary A., Anderson J. M., Bayston R., Marchant R. E. 1998; Bacterial surface properties of clinically isolated Staphylococcus epidermidis strains determine adhesion on polyethylene. J Biomed Mater Res 42:425–432 [View Article][PubMed]
    [Google Scholar]
  41. Vaningelgem F., Zamfir M., Mozzi F., Adriany T., Vancanneyt M., Swings J., De Vuyst L. 2004; Biodiversity of exopolysaccharides produced by Streptococcus thermophilus strains is reflected in their production and their molecular and functional characteristics. Appl Environ Microbiol 70:900–912 [View Article][PubMed]
    [Google Scholar]
  42. Vuong C., Kocianova S., Voyich J. M., Yao Y., Fischer E. R., DeLeo F. R., Otto M. 2004; A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 279:54881–54886 [View Article][PubMed]
    [Google Scholar]
  43. Ziebuhr W., Krimmer V., Rachid S., Lössner I., Götz F., Hacker J. 1999; A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256 . Mol Microbiol 32:345–356 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.055210-0
Loading
/content/journal/jmm/10.1099/jmm.0.055210-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed