1887

Abstract

The foodborne pathogen is able to colonize the human and animal intestinal tracts and subsequently crosses the intestinal barrier, causing systemic infection. For successful establishment of infection, must survive and adapt to the low pH environment of the stomach. Gene sequence analysis indicates that , an orthologue of , encodes a protein containing conserved motifs and critical active amino acids characteristic of arginine deiminase that mediates an arginine deimination reaction. We attempted to characterize the role of ArcA in acid tolerance and in mice models. Transcription of was significantly increased in culture subjected to acid stress at pH 4.8, as compared with that at pH 7.0. Deletion of impaired growth of under mild acidic conditions at pH 5.5, and reduced its survival in synthetic human gastric fluid at pH 2.5 and in the murine stomach. Bacterial load in the spleen of mice intraperitoneally inoculated with an deletion mutant was significantly lower than that of the wild-type strain. These phenotypic changes were recoverable by genetic complementation. Thus, we conclude that not only mediates acid tolerance but also participates in gastric survival and virulence in mice.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.055145-0
2013-06-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/6/813.html?itemId=/content/journal/jmm/10.1099/jmm.0.055145-0&mimeType=html&fmt=ahah

References

  1. Beauregard K. E., Lee K. D., Collier R. J., Swanson J. A.. ( 1997;). pH-dependent perforation of macrophage phagosomes by listeriolysin O from Listeria monocytogenes. . J Exp Med 186:, 1159–1163. [CrossRef][PubMed]
    [Google Scholar]
  2. Begley M., Sleator R. D., Gahan C. G., Hill C.. ( 2005;). Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. . Infect Immun 73:, 894–904. [CrossRef][PubMed]
    [Google Scholar]
  3. Begley M., Cotter P. D., Hill C., Ross R. P.. ( 2010;). Glutamate decarboxylase-mediated nisin resistance in Listeria monocytogenes. . Appl Environ Microbiol 76:, 6541–6546. [CrossRef][PubMed]
    [Google Scholar]
  4. Birmingham C. L., Canadien V., Kaniuk N. A., Steinberg B. E., Higgins D. E., Brumell J. H.. ( 2008;). Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. . Nature 451:, 350–354. [CrossRef][PubMed]
    [Google Scholar]
  5. Camilli A., Tilney L. G., Portnoy D. A.. ( 1993;). Dual roles of plcA in Listeria monocytogenes pathogenesis. . Mol Microbiol 8:, 143–157. [CrossRef][PubMed]
    [Google Scholar]
  6. Chen J., Zhang X., Mei L., Jiang L., Fang W.. ( 2009a;). Prevalence of Listeria in Chinese food products from 13 provinces between 2000 and 2007 and virulence characterization of Listeria monocytogenes isolates. . Foodborne Pathog Dis 6:, 7–14. [CrossRef][PubMed]
    [Google Scholar]
  7. Chen J., Jiang L., Chen Q., Zhao H., Luo X., Chen X., Fang W.. ( 2009b;). lmo0038 is involved in acid and heat stress responses and specific for Listeria monocytogenes lineages I and II, and Listeria ivanovii. . Foodborne Pathog Dis 6:, 365–376. [CrossRef][PubMed]
    [Google Scholar]
  8. Chen J., Cheng C., Xia Y., Zhao H., Fang C., Shan Y., Wu B., Fang W.. ( 2011;). Lmo0036, an ornithine and putrescine carbamoyltransferase in Listeria monocytogenes, participates in arginine deiminase and agmatine deiminase pathways and mediates acid tolerance. . Microbiology 157:, 3150–3161. [CrossRef][PubMed]
    [Google Scholar]
  9. Collins B., Cotter P. D., Hill C., Ross R. P.. ( 2011;). The impact of nisin on sensitive and resistant mutants of Listeria monocytogenes in cottage cheese. . J Appl Microbiol 110:, 1509–1514. [CrossRef][PubMed]
    [Google Scholar]
  10. Conte M. P., Petrone G., Di Biase A. M., Ammendolia M. G., Superti F., Seganti L.. ( 2000;). Acid tolerance in Listeria monocytogenes influences invasiveness of enterocyte-like cells and macrophage-like cells. . Microb Pathog 29:, 137–144. [CrossRef][PubMed]
    [Google Scholar]
  11. Cotter P. D., Hill C.. ( 2003;). Surviving the acid test: responses of gram-positive bacteria to low pH. . Microbiol Mol Biol Rev 67:, 429–453. [CrossRef][PubMed]
    [Google Scholar]
  12. Cotter P. D., Emerson N., Gahan C. G., Hill C.. ( 1999;). Identification and disruption of lisRK, a genetic locus encoding a two-component signal transduction system involved in stress tolerance and virulence in Listeria monocytogenes. . J Bacteriol 181:, 6840–6843.[PubMed]
    [Google Scholar]
  13. Cotter P. D., Gahan C. G., Hill C.. ( 2000;). Analysis of the role of the Listeria monocytogenes F0F1 -AtPase operon in the acid tolerance response. . Int J Food Microbiol 60:, 137–146. [CrossRef][PubMed]
    [Google Scholar]
  14. Cotter P. D., Gahan C. G., Hill C.. ( 2001a;). A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. . Mol Microbiol 40:, 465–475. [CrossRef][PubMed]
    [Google Scholar]
  15. Cotter P. D., O’Reilly K., Hill C.. ( 2001b;). Role of the glutamate decarboxylase acid resistance system in the survival of Listeria monocytogenes LO28 in low pH foods. . J Food Prot 64:, 1362–1368.[PubMed]
    [Google Scholar]
  16. Cotter P. D., Ryan S., Gahan C. G., Hill C.. ( 2005;). Presence of GadD1 glutamate decarboxylase in selected Listeria monocytogenes strains is associated with an ability to grow at low pH. . Appl Environ Microbiol 71:, 2832–2839. [CrossRef][PubMed]
    [Google Scholar]
  17. Cunin R., Glansdorff N., Piérard A., Stalon V.. ( 1986;). Biosynthesis and metabolism of arginine in bacteria. . Microbiol Rev 50:, 314–352.[PubMed]
    [Google Scholar]
  18. Degnan B. A., Fontaine M. C., Doebereiner A. H., Lee J. J., Mastroeni P., Dougan G., Goodacre J. A., Kehoe M. A.. ( 2000;). Characterization of an isogenic mutant of Streptococcus pyogenes Manfredo lacking the ability to make streptococcal acid glycoprotein. . Infect Immun 68:, 2441–2448. [CrossRef][PubMed]
    [Google Scholar]
  19. Fulde M., Willenborg J., de Greeff A., Benga L., Smith H. E., Valentin-Weigand P., Goethe R.. ( 2011;). ArgR is an essential local transcriptional regulator of the arcABC operon in Streptococcus suis and is crucial for biological fitness in an acidic environment. . Microbiology 157:, 572–582. [CrossRef][PubMed]
    [Google Scholar]
  20. Gahan C. G., O’Driscoll B., Hill C.. ( 1996;). Acid adaptation of Listeria monocytogenes can enhance survival in acidic foods and during milk fermentation. . Appl Environ Microbiol 62:, 3128–3132.[PubMed]
    [Google Scholar]
  21. Galkin A., Lu X., Dunaway-Mariano D., Herzberg O.. ( 2005;). Crystal structures representing the Michaelis complex and the thiouronium reaction intermediate of Pseudomonas aeruginosa arginine deiminase. . J Biol Chem 280:, 34080–34087. [CrossRef][PubMed]
    [Google Scholar]
  22. Glaser P., Frangeul L., Buchrieser C., Rusniok C., Amend A., Baquero F., Berche P., Bloecker H., Brandt P.. & other authors ( 2001;). Comparative genomics of Listeria species. . Science 294:, 849–852.[PubMed]
    [Google Scholar]
  23. Gray M. J., Freitag N. E., Boor K. J.. ( 2006;). How the bacterial pathogen Listeria monocytogenes mediates the switch from environmental Dr. Jekyll to pathogenic Mr. Hyde. . Infect Immun 74:, 2505–2512. [CrossRef][PubMed]
    [Google Scholar]
  24. Gruening P., Fulde M., Valentin-Weigand P., Goethe R.. ( 2006;). Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis. . J Bacteriol 188:, 361–369. [CrossRef][PubMed]
    [Google Scholar]
  25. Hamon M., Bierne H., Cossart P.. ( 2006;). Listeria monocytogenes: a multifaceted model. . Nat Rev Microbiol 4:, 423–434. [CrossRef][PubMed]
    [Google Scholar]
  26. Knipp M., Vasák M.. ( 2000;). A colorimetric 96-well microtiter plate assay for the determination of enzymatically formed citrulline. . Anal Biochem 286:, 257–264. [CrossRef][PubMed]
    [Google Scholar]
  27. Li Z., Kulakova L., Li L., Galkin A., Zhao Z., Nash T. E., Mariano P. S., Herzberg O., Dunaway-Mariano D.. ( 2009;). Mechanisms of catalysis and inhibition operative in the arginine deiminase from the human pathogen Giardia lamblia. . Bioorg Chem 37:, 149–161. [CrossRef][PubMed]
    [Google Scholar]
  28. Lu X., Li L., Wu R., Feng X., Li Z., Yang H., Wang C., Guo H., Galkin A.. & other authors ( 2006;). Kinetic analysis of Pseudomonas aeruginosa arginine deiminase mutants and alternate substrates provides insight into structural determinants of function. . Biochemistry 45:, 1162–1172. [CrossRef][PubMed]
    [Google Scholar]
  29. Lucas P. M., Blancato V. S., Claisse O., Magni C., Lolkema J. S., Lonvaud-Funel A.. ( 2007;). Agmatine deiminase pathway genes in Lactobacillus brevis are linked to the tyrosine decarboxylation operon in a putative acid resistance locus. . Microbiology 153:, 2221–2230. [CrossRef][PubMed]
    [Google Scholar]
  30. Marquis R. E., Bender G. R., Murray D. R., Wong A.. ( 1987;). Arginine deiminase system and bacterial adaptation to acid environments. . Appl Environ Microbiol 53:, 198–200.[PubMed]
    [Google Scholar]
  31. Marron L., Emerson N., Gahan C. G., Hill C.. ( 1997;). A mutant of Listeria monocytogenes LO28 unable to induce an acid tolerance response displays diminished virulence in a murine model. . Appl Environ Microbiol 63:, 4945–4947.[PubMed]
    [Google Scholar]
  32. Mead P. S., Slutsker L., Griffin P. M., Tauxe R. V.. ( 1999;). Food-related illness and death in the United States: reply to Dr. Hedberg. . Emerg Infect Dis 5:, 841–842. [CrossRef][PubMed]
    [Google Scholar]
  33. Merrell D. S., Camilli A.. ( 2002;). Acid tolerance of gastrointestinal pathogens. . Curr Opin Microbiol 5:, 51–55. [CrossRef][PubMed]
    [Google Scholar]
  34. Monk I. R., Gahan C. G., Hill C.. ( 2008;). Tools for functional postgenomic analysis of listeria monocytogenes. . Appl Environ Microbiol 74:, 3921–3934. [CrossRef][PubMed]
    [Google Scholar]
  35. O’Driscoll B., Gahan C. G., Hill C.. ( 1996;). Adaptive acid tolerance response in Listeria monocytogenes: isolation of an acid-tolerant mutant which demonstrates increased virulence. . Appl Environ Microbiol 62:, 1693–1698.[PubMed]
    [Google Scholar]
  36. O’Riordan M. X., Moors M. A., Portnoy D. A.. ( 2003;). Listeria intracellular growth and virulence require host-derived lipoic acid. . Science 302:, 462–464. [CrossRef][PubMed]
    [Google Scholar]
  37. Ryan S., Begley M., Gahan C. G., Hill C.. ( 2009;). Molecular characterization of the arginine deiminase system in Listeria monocytogenes: regulation and role in acid tolerance. . Environ Microbiol 11:, 432–445. [CrossRef][PubMed]
    [Google Scholar]
  38. Schnupf P., Portnoy D. A.. ( 2007;). Listeriolysin O: a phagosome-specific lysin. . Microbes Infect 9:, 1176–1187. [CrossRef][PubMed]
    [Google Scholar]
  39. Sleator R. D., Clifford T., Hill C.. ( 2007;). Gut osmolarity: a key environmental cue initiating the gastrointestinal phase of Listeria monocytogenes infection?. Med Hypotheses 69:, 1090–1092. [CrossRef][PubMed]
    [Google Scholar]
  40. Vrancken G., Rimaux T., Wouters D., Leroy F., De Vuyst L.. ( 2009;). The arginine deiminase pathway of Lactobacillus fermentum IMDO 130101 responds to growth under stress conditions of both temperature and salt. . Food Microbiol 26:, 720–727. [CrossRef][PubMed]
    [Google Scholar]
  41. Werbrouck H., Botteldoorn N., Ceelen L., Decostere A., Uyttendaele M., Herman L., Van Coillie E.. ( 2008;). Characterization of virulence properties of Listeria monocytogenes serotype 4b strains of different origins. . Zoonoses Public Health 55:, 242–248. [CrossRef][PubMed]
    [Google Scholar]
  42. Werbrouck H., Vermeulen A., Van Coillie E., Messens W., Herman L., Devlieghere F., Uyttendaele M.. ( 2009;). Influence of acid stress on survival, expression of virulence genes and invasion capacity into Caco-2 cells of Listeria monocytogenes strains of different origins. . Int J Food Microbiol 134:, 140–146. [CrossRef][PubMed]
    [Google Scholar]
  43. Wiedmann M., Arvik T. J., Hurley R. J., Boor K. J.. ( 1998;). General stress transcription factor ζB and its role in acid tolerance and virulence of Listeria monocytogenes. . J Bacteriol 180:, 3650–3656.[PubMed]
    [Google Scholar]
  44. Zeng H. Y., Zhang X. F., Sun Z., Fang W. H.. ( 2006;). Multiplex PCR identification of Listeria monocytogenes isolates from milk and milk-processing environments. . J Sci Food Agric 86:, 367–371. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.055145-0
Loading
/content/journal/jmm/10.1099/jmm.0.055145-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error