1887

Abstract

The present study evaluated the relationship between clonal diversity and some virulence traits of isolated from eight caries-free and eight caries-active subjects. A total of 155 isolates from caries-free subjects and 144 isolates from caries-active subjects were obtained from samples of saliva, dental plaque and tongue surface and identified by PCR. The isolates were submitted to arbitrarily primed (AP)-PCR (OPA-2 and OPA-13) and multilocus enzyme electrophoresis (MLEE) to establish the genotypic diversity. Production of water-insoluble glucan (WIG) (monitored by SDS-PAGE), final pH of cultures and the ability of bacterial cells to adhere to smooth glass in the presence of sucrose were measured. High and comparable abilities of MLEE and AP-PCR were found to distinguish genotypes, using Simpson's index of discrimination (0.971 and 0.968, respectively). The results showed a significant difference ( < 0.01) in the number of genotypes when caries-free and caries-active groups were compared by both fingerprinting methods used. Final pH ( = 0.32) and the percentage of adherence to a glass surface ( = 0.62) did not show differences between the two groups; however, the intensities of WIG bands from the caries-active group were greater than those from the caries-free group ( < 0.01). In addition, WIG was positively correlated with the ability of to adhere to a glass surface ( = 0.34, = 0.02) from caries-active subjects. These data showed that AP-PCR analysis and MLEE are both effective methods for assessing the genetic relatedness of . Using these techniques, it was found that there is a larger number of genotypes of with increased ability to synthesize WIG in caries-active individuals.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05512-0
2004-07-01
2020-10-27
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/7/JM530717.html?itemId=/content/journal/jmm/10.1099/jmm.0.05512-0&mimeType=html&fmt=ahah

References

  1. Alaluusua S., Kleemola-Kujala E., Nyström M., Evälahti M., Grönroos L. 1987; Caries in the primary teeth and salivary Streptococcus mutans and lactobacillus levels as indicators of caries in permanent teeth. Pediatr Dent 9:126–130
    [Google Scholar]
  2. Alaluusua S., Mattö J., Grönroos L., Innila S., Torkko H., Asikainem S., Jousimies-Somer H., Saarela M. 1996; Oral colonization by more than one clonal type of mutans streptococcus in children with nursing-bottle dental caries. Arch Oral Biol 41:167–173 [CrossRef]
    [Google Scholar]
  3. Alaluusua S., Grönroos L., Zhu X., Saarela M., Mattö J., Asikainem S., Fukushima K. 1997; Production of glucosyltransferases by clinical mutans streptococcal isolates as determined by semiquantitative cross-dot assay. Arch Oral Biol 42:417–422 [CrossRef]
    [Google Scholar]
  4. Beighton D., Rippon H. R., Thomas H. E. C. 1987; The distribution of Streptococcus mutans serotypes and dental caries in a group of 5- to 8-year-old Hampshire schoolchildren. Br Dent J 162:103–106 [CrossRef]
    [Google Scholar]
  5. Boerlin P. 1997; Applications of multilocus enzyme electrophoresis in medical microbiology. J Microbiol Methods 28:221–231 [CrossRef]
    [Google Scholar]
  6. Carlsson P., Olsson B., Bratthall D. 1985; The relationship between the bacterium Streptococcus mutans in the saliva and dental caries in children in Mozambique. Arch Oral Biol 30:265–268 [CrossRef]
    [Google Scholar]
  7. Chia J. S., Hsu T. Y., Teng L. J., Chen J. Y., Hahn L. J., Yang C. S. 1991; Glucosyltransferase gene polymorphism among Streptococcus mutans strains. Infect Immun 59:1656–1660
    [Google Scholar]
  8. Cury J. A., Rebello M. A. B., Del Bel Cury A. A. 1997; In situ relationship between sucrose exposure and the composition of dental plaque. Caries Res 31:356–360 [CrossRef]
    [Google Scholar]
  9. de Soet J. J., Toors F. A., de Graaff J. 1989; Acidogenesis by oral streptococci at different pH values. Caries Res 23:14–17 [CrossRef]
    [Google Scholar]
  10. Emilson C. G., Carlsson P., Bratthall D. 1987; Strains of mutans streptococci isolated in a population with extremely low caries prevalence are cariogenic in the hamster model. Oral Microbiol Immunol 2:183–186 [CrossRef]
    [Google Scholar]
  11. Gilmour M. N., Whittam T. S., Kilian M., Selander R. K. 1987; Genetic relationships among the oral streptococci. J Bacteriol 169:5247–5257
    [Google Scholar]
  12. Gold O. G., Jordan H. V., van Houte J. 1973; A selective medium for Streptococcus mutans . Arch Oral Biol 18:1357–1364 [CrossRef]
    [Google Scholar]
  13. Grönroos L., Alaluusua S. 2000; Site-specific oral colonization of mutans streptococci detected by arbitrarily primed PCR fingerprinting. Caries Res 34:474–480 [CrossRef]
    [Google Scholar]
  14. Hamada S., Slade H. D. 1980; Biology, immunology, and cariogenicity of Streptococcus mutans . Microbiol Rev 44:331–384
    [Google Scholar]
  15. Hamada S., Torii M. 1978; Effect of sucrose in culture media on the location of glucosyltransferase of Streptococcus mutans and cell adherence to glass surfaces. Infect Immun 20:592–599
    [Google Scholar]
  16. Hazlett K. R. O., Michalek S. M., Banas J. A. 1998; Inactivation of the gbpA gene of Streptococcus mutans increases virulence and promotes in vivo accumulation of recombination between the glucosyltransferase B and C genes. Infect Immun 66:2180–2185
    [Google Scholar]
  17. Hirose H., Hirose K., Isogai E., Miura H., Ueda I. 1993; Close association between Streptococcus sobrinus in the saliva of young children and smooth-surface caries increment. Caries Res 27:292–297 [CrossRef]
    [Google Scholar]
  18. Hunter P. R., Gaston M. A. 1988; Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol 26:2465–2466
    [Google Scholar]
  19. Köhler B., Birkhed D., Olsson S. 1995; Acid production by human strains of Streptococcus mutans and Streptococcus sobrinus . Caries Res 29:402–406 [CrossRef]
    [Google Scholar]
  20. Kreulen C. M., de Soet H. J., Hogeveen R., Veerkamp J. S. 1997; Streptococcus mutans in children using nursing bottles. ASDC J Dent Child 64:107–111
    [Google Scholar]
  21. Kuramitsu H. K. 1993; Virulence factors of mutans streptococci: role of molecular genetics. Crit Rev Oral Biol Med 4:159–176
    [Google Scholar]
  22. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  23. Li Y., Caufield P. W. 1998; Arbitrarily primed polymerase chain reaction fingerprinting for the genotypic identification of mutans streptococci from humans. Oral Microbiol Immunol 13:17–22 [CrossRef]
    [Google Scholar]
  24. Loesche W. J. 1986; Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353–380
    [Google Scholar]
  25. Matee M. I. N., Mikx F. H. M., de Soet J. S., Maselle S. Y., de Graff J., van Palenstein Helderman W. H. 1993; Mutans streptococci in caries-active and caries-free infants in Tanzania. Oral Microbiol Immunol 8:322–324 [CrossRef]
    [Google Scholar]
  26. Mattos-Graner R. O., Smith D. J., King W. F., Mayer M. P. 2000; Water-insoluble glucan synthesis by mutans streptococcal strains correlates with caries incidence in 12- to 30-month-old children. J Dent Res 79:1371–1377 [CrossRef]
    [Google Scholar]
  27. Mattos-Graner R. O., Jin S., King W. F., Chen T., Smith D. J., Duncan M. J. 2001; Cloning of the Streptococcus mutans gene encoding glucan binding protein B and analysis of genetic diversity and protein production in clinical isolates. Infect Immun 69:6931–6941 [CrossRef]
    [Google Scholar]
  28. Oho T., Yamashita Y., Shimazaki Y., Kushiyama M., Koga T. 2000; Simple and rapid detection of Streptococcus mutans and Streptococcus sobrinus in human saliva by polymerase chain reaction. Oral Microbiol Immunol 15:258–262 [CrossRef]
    [Google Scholar]
  29. Pujol C., Joly S., Lockhart S. R., Noel S., Tybayrenc M., Soll D. R. 1997; Parity among the randomly amplified polymorphic DNA method, multilocus enzyme electrophoresis, and Southern blot hybridization with the moderately repetitive DNA probe Ca3 for fingerprinting Candida albicans . J Clin Microbiol 35:2348–2358
    [Google Scholar]
  30. Redmo Emanuelsson I. M., Carlsson P., Hamberg K., Bratthall D. 2003; Tracing genotypes of mutans streptococci on tooth sites by random amplified polymorphic DNA (RAPD) analysis. Oral Microbiol Immunol 18:24–29 [CrossRef]
    [Google Scholar]
  31. Saarela M., Hannula J., Mattö J., Asikainen S., Alaluusua S. 1996; Typing of mutans streptococci by arbitrarily primed polymerase chain reaction. Arch Oral Biol 41:821–826 [CrossRef]
    [Google Scholar]
  32. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S. 1986; Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51:873–884
    [Google Scholar]
  33. Shiroza T., Ueda S., Kuramitsu H. K. 1987; Sequence analysis of the gtf B gene from Streptococcus mutans . J Bacteriol 169:4263–4270
    [Google Scholar]
  34. Tibayrenc M., Neubauer K., Barnabé C., Guerrini F., Skarecky D., Ayala F. J. 1993; Genetic characterization of six parasitic protozoa: parity between random-primer DNA typing and multilocus enzyme electrophoresis. Proc Natl Acad Sci U S A 90:1335–1339 [CrossRef]
    [Google Scholar]
  35. van Houte J., Lopman J., Kent R. 1996; The final pH of bacteria comprising the predominant flora on sound and carious human root and enamel surfaces. J Dent Res 75:1008–1014 [CrossRef]
    [Google Scholar]
  36. Welsh J., McClelland M. 1990; Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218 [CrossRef]
    [Google Scholar]
  37. Yamashita Y., Bowen W. H., Burne R. A., Kuramitsu H. K. 1993; Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun 61:3811–3817
    [Google Scholar]
  38. Zero D. T., Fu J., Anne K. M., Cassata S., McCormack S. M., Gwinner L. M. 1992; An improved intra-oral enamel demineralization test model for the study of dental caries. J Dent Res 71: Special Issue 871–878
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05512-0
Loading
/content/journal/jmm/10.1099/jmm.0.05512-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error