1887

Abstract

The present study evaluated the relationship between clonal diversity and some virulence traits of isolated from eight caries-free and eight caries-active subjects. A total of 155 isolates from caries-free subjects and 144 isolates from caries-active subjects were obtained from samples of saliva, dental plaque and tongue surface and identified by PCR. The isolates were submitted to arbitrarily primed (AP)-PCR (OPA-2 and OPA-13) and multilocus enzyme electrophoresis (MLEE) to establish the genotypic diversity. Production of water-insoluble glucan (WIG) (monitored by SDS-PAGE), final pH of cultures and the ability of bacterial cells to adhere to smooth glass in the presence of sucrose were measured. High and comparable abilities of MLEE and AP-PCR were found to distinguish genotypes, using Simpson's index of discrimination (0.971 and 0.968, respectively). The results showed a significant difference ( < 0.01) in the number of genotypes when caries-free and caries-active groups were compared by both fingerprinting methods used. Final pH ( = 0.32) and the percentage of adherence to a glass surface ( = 0.62) did not show differences between the two groups; however, the intensities of WIG bands from the caries-active group were greater than those from the caries-free group ( < 0.01). In addition, WIG was positively correlated with the ability of to adhere to a glass surface ( = 0.34, = 0.02) from caries-active subjects. These data showed that AP-PCR analysis and MLEE are both effective methods for assessing the genetic relatedness of . Using these techniques, it was found that there is a larger number of genotypes of with increased ability to synthesize WIG in caries-active individuals.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05512-0
2004-07-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/7/JM530717.html?itemId=/content/journal/jmm/10.1099/jmm.0.05512-0&mimeType=html&fmt=ahah

References

  1. Alaluusua, S., Kleemola-Kujala, E., Nyström, M., Evälahti, M. & Grönroos, L. ( 1987;). Caries in the primary teeth and salivary Streptococcus mutans and lactobacillus levels as indicators of caries in permanent teeth. Pediatr Dent 9, 126–130.
    [Google Scholar]
  2. Alaluusua, S., Mattö, J., Grönroos, L., Innila, S., Torkko, H., Asikainem, S., Jousimies-Somer, H. & Saarela, M. ( 1996;). Oral colonization by more than one clonal type of mutans streptococcus in children with nursing-bottle dental caries. Arch Oral Biol 41, 167–173.[CrossRef]
    [Google Scholar]
  3. Alaluusua, S., Grönroos, L., Zhu, X., Saarela, M., Mattö, J., Asikainem, S. & Fukushima, K. ( 1997;). Production of glucosyltransferases by clinical mutans streptococcal isolates as determined by semiquantitative cross-dot assay. Arch Oral Biol 42, 417–422.[CrossRef]
    [Google Scholar]
  4. Beighton, D., Rippon, H. R. & Thomas, H. E. C. ( 1987;). The distribution of Streptococcus mutans serotypes and dental caries in a group of 5- to 8-year-old Hampshire schoolchildren. Br Dent J 162, 103–106.[CrossRef]
    [Google Scholar]
  5. Boerlin, P. ( 1997;). Applications of multilocus enzyme electrophoresis in medical microbiology. J Microbiol Methods 28, 221–231.[CrossRef]
    [Google Scholar]
  6. Carlsson, P., Olsson, B. & Bratthall, D. ( 1985;). The relationship between the bacterium Streptococcus mutans in the saliva and dental caries in children in Mozambique. Arch Oral Biol 30, 265–268.[CrossRef]
    [Google Scholar]
  7. Chia, J. S., Hsu, T. Y., Teng, L. J., Chen, J. Y., Hahn, L. J. & Yang, C. S. ( 1991;). Glucosyltransferase gene polymorphism among Streptococcus mutans strains. Infect Immun 59, 1656–1660.
    [Google Scholar]
  8. Cury, J. A., Rebello, M. A. B. & Del Bel Cury, A. A. ( 1997;). In situ relationship between sucrose exposure and the composition of dental plaque. Caries Res 31, 356–360.[CrossRef]
    [Google Scholar]
  9. de Soet, J. J., Toors, F. A. & de Graaff, J. ( 1989;). Acidogenesis by oral streptococci at different pH values. Caries Res 23, 14–17.[CrossRef]
    [Google Scholar]
  10. Emilson, C. G., Carlsson, P. & Bratthall, D. ( 1987;). Strains of mutans streptococci isolated in a population with extremely low caries prevalence are cariogenic in the hamster model. Oral Microbiol Immunol 2, 183–186.[CrossRef]
    [Google Scholar]
  11. Gilmour, M. N., Whittam, T. S., Kilian, M. & Selander, R. K. ( 1987;). Genetic relationships among the oral streptococci. J Bacteriol 169, 5247–5257.
    [Google Scholar]
  12. Gold, O. G., Jordan, H. V. & van Houte, J. ( 1973;). A selective medium for Streptococcus mutans. Arch Oral Biol 18, 1357–1364.[CrossRef]
    [Google Scholar]
  13. Grönroos, L. & Alaluusua, S. ( 2000;). Site-specific oral colonization of mutans streptococci detected by arbitrarily primed PCR fingerprinting. Caries Res 34, 474–480.[CrossRef]
    [Google Scholar]
  14. Hamada, S. & Slade, H. D. ( 1980;). Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44, 331–384.
    [Google Scholar]
  15. Hamada, S. & Torii, M. ( 1978;). Effect of sucrose in culture media on the location of glucosyltransferase of Streptococcus mutans and cell adherence to glass surfaces. Infect Immun 20, 592–599.
    [Google Scholar]
  16. Hazlett, K. R. O., Michalek, S. M. & Banas, J. A. ( 1998;). Inactivation of the gbpA gene of Streptococcus mutans increases virulence and promotes in vivo accumulation of recombination between the glucosyltransferase B and C genes. Infect Immun 66, 2180–2185.
    [Google Scholar]
  17. Hirose, H., Hirose, K., Isogai, E., Miura, H. & Ueda, I. ( 1993;). Close association between Streptococcus sobrinus in the saliva of young children and smooth-surface caries increment. Caries Res 27, 292–297.[CrossRef]
    [Google Scholar]
  18. Hunter, P. R. & Gaston, M. A. ( 1988;). Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol 26, 2465–2466.
    [Google Scholar]
  19. Köhler, B., Birkhed, D. & Olsson, S. ( 1995;). Acid production by human strains of Streptococcus mutans and Streptococcus sobrinus. Caries Res 29, 402–406.[CrossRef]
    [Google Scholar]
  20. Kreulen, C. M., de Soet, H. J., Hogeveen, R. & Veerkamp, J. S. ( 1997;). Streptococcus mutans in children using nursing bottles. ASDC J Dent Child 64, 107–111.
    [Google Scholar]
  21. Kuramitsu, H. K. ( 1993;). Virulence factors of mutans streptococci: role of molecular genetics. Crit Rev Oral Biol Med 4, 159–176.
    [Google Scholar]
  22. Laemmli, U. K. ( 1970;). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  23. Li, Y. & Caufield, P. W. ( 1998;). Arbitrarily primed polymerase chain reaction fingerprinting for the genotypic identification of mutans streptococci from humans. Oral Microbiol Immunol 13, 17–22.[CrossRef]
    [Google Scholar]
  24. Loesche, W. J. ( 1986;). Role of Streptococcus mutans in human dental decay. Microbiol Rev 50, 353–380.
    [Google Scholar]
  25. Matee, M. I. N., Mikx, F. H. M., de Soet, J. S., Maselle, S. Y., de Graff, J. & van Palenstein Helderman, W. H. ( 1993;). Mutans streptococci in caries-active and caries-free infants in Tanzania. Oral Microbiol Immunol 8, 322–324.[CrossRef]
    [Google Scholar]
  26. Mattos-Graner, R. O., Smith, D. J., King, W. F. & Mayer, M. P. ( 2000;). Water-insoluble glucan synthesis by mutans streptococcal strains correlates with caries incidence in 12- to 30-month-old children. J Dent Res 79, 1371–1377.[CrossRef]
    [Google Scholar]
  27. Mattos-Graner, R. O., Jin, S., King, W. F., Chen, T., Smith, D. J. & Duncan, M. J. ( 2001;). Cloning of the Streptococcus mutans gene encoding glucan binding protein B and analysis of genetic diversity and protein production in clinical isolates. Infect Immun 69, 6931–6941.[CrossRef]
    [Google Scholar]
  28. Oho, T., Yamashita, Y., Shimazaki, Y., Kushiyama, M. & Koga, T. ( 2000;). Simple and rapid detection of Streptococcus mutans and Streptococcus sobrinus in human saliva by polymerase chain reaction. Oral Microbiol Immunol 15, 258–262.[CrossRef]
    [Google Scholar]
  29. Pujol, C., Joly, S., Lockhart, S. R., Noel, S., Tybayrenc, M. & Soll, D. R. ( 1997;). Parity among the randomly amplified polymorphic DNA method, multilocus enzyme electrophoresis, and Southern blot hybridization with the moderately repetitive DNA probe Ca3 for fingerprinting Candida albicans. J Clin Microbiol 35, 2348–2358.
    [Google Scholar]
  30. Redmo Emanuelsson, I. M., Carlsson, P., Hamberg, K. & Bratthall, D. ( 2003;). Tracing genotypes of mutans streptococci on tooth sites by random amplified polymorphic DNA (RAPD) analysis. Oral Microbiol Immunol 18, 24–29.[CrossRef]
    [Google Scholar]
  31. Saarela, M., Hannula, J., Mattö, J., Asikainen, S. & Alaluusua, S. ( 1996;). Typing of mutans streptococci by arbitrarily primed polymerase chain reaction. Arch Oral Biol 41, 821–826.[CrossRef]
    [Google Scholar]
  32. Selander, R. K., Caugant, D. A., Ochman, H., Musser, J. M., Gilmour, M. N. & Whittam, T. S. ( 1986;). Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51, 873–884.
    [Google Scholar]
  33. Shiroza, T., Ueda, S., Kuramitsu, H. K. ( 1987;). Sequence analysis of the gtfB gene from Streptococcus mutans. J Bacteriol 169, 4263–4270.
    [Google Scholar]
  34. Tibayrenc, M., Neubauer, K., Barnabé, C., Guerrini, F., Skarecky, D. & Ayala, F. J. ( 1993;). Genetic characterization of six parasitic protozoa: parity between random-primer DNA typing and multilocus enzyme electrophoresis. Proc Natl Acad Sci U S A 90, 1335–1339.[CrossRef]
    [Google Scholar]
  35. van Houte, J., Lopman, J. & Kent, R. ( 1996;). The final pH of bacteria comprising the predominant flora on sound and carious human root and enamel surfaces. J Dent Res 75, 1008–1014.[CrossRef]
    [Google Scholar]
  36. Welsh, J. & McClelland, M. ( 1990;). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18, 7213–7218.[CrossRef]
    [Google Scholar]
  37. Yamashita, Y., Bowen, W. H., Burne, R. A. & Kuramitsu, H. K. ( 1993;). Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun 61, 3811–3817.
    [Google Scholar]
  38. Zero, D. T., Fu, J., Anne, K. M., Cassata, S., McCormack, S. M. & Gwinner, L. M. ( 1992;). An improved intra-oral enamel demineralization test model for the study of dental caries. J Dent Res 71 (Special Issue), 871–878.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05512-0
Loading
/content/journal/jmm/10.1099/jmm.0.05512-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error