1887

Abstract

Human papillomavirus type 16 (HPV-16) is the major causative agent of cervical cancer. To date, vaccine strategies against HPV-16 are based on the ability of the E7 oncoprotein to elicit an immune response against this virus. In this study, the use of an inducible or a constitutive system to produce the HPV-16 E7 protein in , a non-pathogenic and non-invasive Gram-positive bacterium, was compared. The highest E7 production was obtained with the inducible system. When mice were immunized intranasally with recombinant lactococci expressing either inducible or constitutive E7, an antigen-specific cellular response (i.e. secretion of IL2 and IFN-γ cytokines) was evoked and was substantially higher in mice receiving expressing E7 with the inducible system. As bacterial antigen location may influence the immune response, recombinant strains that produced E7 in three cellular locations, intracellular, secreted or cell-wall-anchored were evaluated. The highest immune response was elicited by administration of producing an inducible cell-wall-anchored form of E7 protein. These promising results represent a step towards the development of a new, safe mucosal vector to treat HPV-related cervical cancer.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05472-0
2004-05-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/5/JM530512.html?itemId=/content/journal/jmm/10.1099/jmm.0.05472-0&mimeType=html&fmt=ahah

References

  1. Baker, C. C., Phelps, W. C., Lindgren, V., Braun, M. J., Gonda, M. A. & Howley, P. M. ( 1987;). Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J Virol 61, 962–971.
    [Google Scholar]
  2. Bedell, M. A., Jones, K. H. & Laimins, L. A. ( 1987;). The E6-E7 region of human papillomavirus type 18 is sufficient for transformation of NIH 3T3 and rat-1 cells. J Virol 61, 3635–3640.
    [Google Scholar]
  3. Bermúdez-Humarán, L. G., Langella, P., Miyoshi, A., Gruss, A., Taméz-Guerra, R., Montes de Oca-Luna, R. & Le Loir, Y. ( 2002;). Production of human papillomavirus type 16 E7 protein in Lactococcus lactis. Appl Environ Microbiol 68, 917–922.[CrossRef]
    [Google Scholar]
  4. Bermúdez-Humarán, L. G., Cortes-Perez, N. G., Le Loir, Y., Gruss, A., Rodríguez-Padilla, C., Saucedo-Cardenas, O., Langella, P. & Montes de Oca-Luna, R. ( 2003a;). Fusion to a carrier protein and a synthetic propeptide enhances E7 HPV-16 production and secretion in Lactococcus lactis. Biotechnol Prog 19, 1101–1104.[CrossRef]
    [Google Scholar]
  5. Bermúdez-Humarán, L. G., Langella, P., Cortes-Perez, N. G., Gruss, A., Taméz-Guerra, R. S., Oliveira, S. C., Saucedo-Cardenas, O., Montes de Oca-Luna, R. & Le Loir, Y. ( 2003b;). Intranasal immunization with recombinant Lactococcus lactis secreting murine interleukin-12 enhances antigen-specific Th1 cytokine production. Infect Immun 71, 1887–1896.[CrossRef]
    [Google Scholar]
  6. Bermúdez-Humarán, L. G., Langella, P., Commissaire, J., Gilbert, S., Le Loir, Y., L'Haridon, R. & Corthier, G. ( 2003c;). Controlled intra- or extracellular production of staphylococcal nuclease and ovine omega interferon in Lactococcus lactis. FEMS Microbiol Lett 224, 307–313.[CrossRef]
    [Google Scholar]
  7. Berumen, J. & Villegas, N. ( 1997;). Vacunas terapéuticas recombinantes contra el cáncer del cuello uterino. Salud Publica Mex 39, 288–297 (in Spanish).[CrossRef]
    [Google Scholar]
  8. Chatel, J. M., Langella, P., Adel-Patient, K., Commissaire, J., Wal, J. M. & Corthier, G. ( 2001;). Induction of mucosal immune response after intranasal or oral inoculation of mice with Lactococcus lactis producing bovine beta-lactoglobulin. Clin Diagn Lab Immunol 8, 545–551.
    [Google Scholar]
  9. Cortes-Perez, N. G., Bermúdez-Humarán, L. G., Le Loir, Y., Rodríguez-Padilla, C., Gruss, A., Saucedo-Cardenas, O., Langella, P. & Montes de Oca-Luna, R. ( 2003;). Mice immunization with recombinant lactococci displaying a surface HPV-16 E7 oncoprotein. FEMS Microbiol Lett 229, 37–42.[CrossRef]
    [Google Scholar]
  10. de Ruyter, P. G., Kuipers, O. P. & de Vos, W. M. ( 1996;). Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62, 3662–3667.
    [Google Scholar]
  11. de Vos, W. M. ( 1999;). Gene expression systems for lactic acid bacteria. Curr Opin Microbiol 2, 289–295.[CrossRef]
    [Google Scholar]
  12. Dieye, Y., Usai, S., Clier, F., Gruss, A. & Piard, J. C. ( 2001;). Design of a protein targeting system for lactic acid bacteria. J Bacteriol 183, 4157–4166.[CrossRef]
    [Google Scholar]
  13. Drouault, S., Corthier, G., Ehrlich, S. D. & Renault, P. ( 1999;). Survival, physiology, and lysis of Lactococcus lactis in the digestive tract. Appl Environ Microbiol 65, 4881–4886.
    [Google Scholar]
  14. Dyson, N., Howley, P. M., Munger, K. & Harlow, E. ( 1989;). The human papillomavirus-16 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934–937.[CrossRef]
    [Google Scholar]
  15. Enouf, V., Langella, P., Commissaire, J., Cohen, J. & Corthier, G. ( 2001;). Bovine rotavirus nonstructural protein 4 produced by Lactococcus lactis is antigenic and immunogenic. Appl Environ Microbiol 67, 1423–1428.[CrossRef]
    [Google Scholar]
  16. Furumoto, H. & Irahara, M. ( 2002;). Human papillomavirus (HPV) and cervical cancer. J Med Invest 49, 124–133.
    [Google Scholar]
  17. Gasson, M. J. ( 1983;). Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154, 1–9.
    [Google Scholar]
  18. Geoffroy, M. C., Guyard, C., Quatannens, B., Pavan, S., Lange, M. & Mercenier, A. ( 2000;). Use of green fluorescent protein to tag lactic acid bacterium strains under development as live vaccine vectors. Appl Environ Microbiol 66, 383–391.[CrossRef]
    [Google Scholar]
  19. Gérard, C. M., Baudson, N., Kraemer, K., Bruck, C., Garcon, N., Paterson, Y., Pan, Z. K. & Pardoll, D. ( 2001;). Therapeutic potential of protein and adjuvant vaccinations on tumour growth. Vaccine 19, 2583–2589.[CrossRef]
    [Google Scholar]
  20. Jabbar, I. A., Fernando, G. J., Saunders, N., Aldovini, A., Young, R., Malcolm, K. & Frazer, I. H. ( 2000;). Immune responses induced by BCG recombinant for human papillomavirus L1 and E7 proteins. Vaccine 18, 2444–2453.[CrossRef]
    [Google Scholar]
  21. Kok, J., van der Vossen, J. M. & Venema, G. ( 1984;). Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Appl Environ Microbiol 48, 726–731.
    [Google Scholar]
  22. Koutsky, L. A., Ault, K. A., Wheeler, C. M., Brown, D. R., Barr, E., Alvarez, F. B., Chiacchierini, L. M. & Jansen, K. U. ( 2002;). A controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med 347, 1645–1651.[CrossRef]
    [Google Scholar]
  23. Kuipers, O. P., de Ruyter, P. G., Kleerebezen, M. & de Vos, W. M. ( 1998;). Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64, 15–21.[CrossRef]
    [Google Scholar]
  24. Langella, P., Le Loir, Y., Ehrlich, S. D. & Gruss, A. ( 1993;). Efficient plasmid mobilization by pIP501 in Lactococcus lactis subsp.lactis. J Bacteriol 175, 5806–5813.
    [Google Scholar]
  25. Londoño, L. P., Chatfield, S., Tindle, R. W., Herd, K., Gao, X. M., Frazer, I. & Dougan, G. ( 1996;). Immunization of mice using Salmonella typhimurium expressing human papillomavirus type 16 E7 epitopes inserted into hepatitis B virus core antigen. Vaccine 14, 545–552.[CrossRef]
    [Google Scholar]
  26. Norton, P. M., Brown, H. W., Wells, J. M., Macpherson, A. M., Wilson, P. W. & Le Page, R. W. ( 1996;). Factors affecting the immunogenicity of tetanus toxin fragment C expressed in Lactococcus lactis. FEMS Immunol Med Microbiol 14, 167–177.[CrossRef]
    [Google Scholar]
  27. Parkin, D. M., Pisani, P. & Ferlay, J. ( 1999;). Global cancer statistics. CA Cancer J Clin 49, 33–64.[CrossRef]
    [Google Scholar]
  28. Piard, J. C., Jimenez-Diaz, R., Fischetti, V. A., Ehrlich, S. D. & Gruss, A. ( 1997;). The M6 protein of Streptococcus pyogenes and its potential as a tool to anchor biologically active molecules at the surface of lactic acid bacteria. Adv Exp Med Biol 418, 545–550.
    [Google Scholar]
  29. Reinstein, E., Scheffner, M., Oren, M., Ciechanover, A. & Schwartz, A. ( 2000;). Degradation of the E7 human papillomavirus oncoprotein by the ubiquitin-proteasome system: targeting via ubiquitination of the N-terminal residue. Oncogene 19, 5944–5950.[CrossRef]
    [Google Scholar]
  30. Reveneau, N., Geoffroy, M. C., Locht, C., Chagnaud, P. & Mercenier, A. ( 2002;). Comparison of the immune responses induced by local immunizations with recombinant Lactobacillus plantarum producing tetanus toxin fragment C in different cellular locations. Vaccine 20, 1769–1777.[CrossRef]
    [Google Scholar]
  31. Ribeiro, L. A., Azevedo, V., Le Loir, Y., Oliveira, S. C., Dieye, Y., Piard, J. C., Gruss, A. & Langella, P. ( 2002;). Efficient production and targeting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis. Appl Environ Microbiol 68, 910–916.[CrossRef]
    [Google Scholar]
  32. Robinson, K., Chamberlain, L. M., Schofield, K. M., Wells, J. M. & Le Page, R. W. ( 1997;). Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nat Biotechnol 15, 653–657.[CrossRef]
    [Google Scholar]
  33. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  34. Steidler, L., Robinson, K., Chamberlain, L., Schofield, M., Remaut, E., Le Page, R. W. F. & Wells, J. M. ( 1998;). Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine. Infect Immun 66, 3183–3189.
    [Google Scholar]
  35. Tanaka, A., Noda, T., Yajima, H., Hatanaka, M. & Ito, Y. ( 1989;). Identification of a transforming gene of human papillomavirus type 16. J Virol 63, 1465–1469.
    [Google Scholar]
  36. van der Vossen, J. M., van der Lelie, D. & Venema, G. ( 1987;). Isolation and characterization of Streptococcus cremoris Wg2-specific promoters. Appl Environ Microbiol 53, 2452–2457.
    [Google Scholar]
  37. Xin, K. Q., Hoshino, Y., Toda, Y. & 9 other authors ( 2003;). Immunogenicity and protective efficacy of orally administered recombinant Lactococcus lactis expressing surface-bound HIV Env. Blood 102, 223–228.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05472-0
Loading
/content/journal/jmm/10.1099/jmm.0.05472-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error