1887

Abstract

Resistance traits and the presence of enterotoxin-encoding genes were investigated in staphylococcus isolates obtained from expressed human breast milk. A total of 54 staphylococcal isolates identified as (53.6 %), (20.4 %), (13 %) and (13 %) were investigated. By using a disc-diffusion method, higher rates of resistance, including intermediate resistance, were observed for penicillin (87 %) and erythromycin (59.3 %). All strains were susceptible to clindamycin and vancomycin. Minimal inhibitory concentration (MIC) was determined by a macrodilution method for four clinically relevant antimicrobial drugs. High rates of resistance or intermediate resistance were observed for erythromycin, gentamicin and oxacillin. Additionally, three isolates showed reduced susceptibility to vancomycin (MIC, 8 μg ml). Genetic determinants of resistance were detected by using PCR and the results showed good correlation with the macrodilution tests. Moreover, in four staphylococcus isolates, the presence of enterotoxin-encoding genes (, and ) was identified. The results demonstrated that expressed human breast milk can be a reservoir of multiresistant staphylococci that may also harbour important virulent determinants.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05453-0
2004-08-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/8/JM530808.html?itemId=/content/journal/jmm/10.1099/jmm.0.05453-0&mimeType=html&fmt=ahah

References

  1. Adekeye, J. D. & Adesiyun, A. A. ( 1984;). Frequency of isolation of enterotoxigenic staphylococci from milk of nursing mothers in Kaduna, Nigeria. J Hyg (Lond) 93, 531–538.[CrossRef]
    [Google Scholar]
  2. Balaban, N. & Rasooly, A. ( 2000;). Staphylococcal enterotoxins. Int J Food Microbiol 61, 1–10.[CrossRef]
    [Google Scholar]
  3. Biavasco F., Vignaroli C. & Varaldo P.E. ( 2000;). Glycopeptide resistance in coagulase-negative staphylococci. Eur J Clin Microbiol Infect Dis 19, 403–417.[CrossRef]
    [Google Scholar]
  4. Boo, N. Y., Nordiah, A. J., Alfizah, H., Nor-Rohaini, A. H. & Lim, V. K. ( 2001;). Contamination of breast milk obtained by manual expression and breast pumps in mothers of very low birthweight infants. J Hosp Infect 49, 274–281.[CrossRef]
    [Google Scholar]
  5. Del'Alamo L., Cereda R.F., Tosin I., Miranda E.A. & Sader H.S. ( 1999;). Antimicrobial susceptibility of coagulase-negative staphylococci and characterization of isolates with reduced susceptibility to glycopeptides. Diagn Microbiol Infect Dis 34, 185–191.[CrossRef]
    [Google Scholar]
  6. Eady, E. A., Ross, J. I., Tipper, J. L., Walters, C. E., Cove, J. H. & Noble, W. C. ( 1993;). Distribution of genes encoding erythromycin ribosomal methylases and an erythromycin efflux pump in epidemiologically distinct groups of staphylococci. J Antimicrob Chemother 31, 211–217.[CrossRef]
    [Google Scholar]
  7. Edwards, W. H. ( 2002;). Preventing nosocomial bloodstream infection in very low birth weight infants. Semin Neonatol 7, 325–333.[CrossRef]
    [Google Scholar]
  8. Goldmann, D. A. ( 1988;). The bacterial flora of neonates in intensive care-monitoring and manipulation. J Hosp Infect 11, A340–A351.
    [Google Scholar]
  9. Gutierrez, D. & Almeida, J. A. ( 1998;). Human milk banks in Brazil. J Hum Lact 14, 333–335.[CrossRef]
    [Google Scholar]
  10. Hussain, Z., Stoakes, L., Massey, V., Diagre, D., Fitzgerald, V., Elsayed, S. & Lannigan, R. ( 2000;). Correlation of oxacillin MIC with mecA gene carriage in coagulase-negative staphylococci. J Clin Microbiol 38, 752–754.
    [Google Scholar]
  11. Jay, J. M. ( 1992;). Modern Food Microbiology, 4th edn. New York: Chapman & Hall.
  12. Killgore, G. E., Holloway, B. & Tenover, F. C. ( 2000;). A 5′ nuclease PCR (TaqMan) high-throughput assay for detection of the mecA gene in staphylococci. J Clin Microbiol 38, 2516–2519.
    [Google Scholar]
  13. Kloos, W. E. & Bannerman, T. L. ( 1994;). Update on clinical significance of coagulase-negative staphylococci. Clin Microbiol Rev 7, 117–140.
    [Google Scholar]
  14. Kolbert, C., Arruda, J., Varga-Delmore, P., Zheng, X., Lewis, M., Kolberg, J. & Persing D. H. ( 1998;). Branched-DNA assay for detection of the mecA gene in oxacillin-resistant and oxacillin-sensitive staphylococci. J Clin Microbiol 36, 2640–2644.
    [Google Scholar]
  15. Koneman, E. W., Allen, S. D., Janda, W. M. & Schreckenberger, P. C. ( 1997;). Color Atlas and Textbook of Diagnostic Microbiology, 5th edn. Philadelphia: Lippincott Willians & Wilkins.
  16. Louie, L., Matsumura, S. O., Choi, E., Louie, M. & Simor, A. E. ( 2000;). Evaluation of three rapid methods for detection of methicillin resistance in Staphylococcus aureus. J Clin Microbiol 38, 2170–2173.
    [Google Scholar]
  17. Martineau, F., Picard, F. J., Lansac, N., Ménard, C., Roy, P. H., Ouellette, M. & Bergeron, M. G. ( 2000;). Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother 44, 231–238.[CrossRef]
    [Google Scholar]
  18. Monday, S. R. & Bohach, G. A. ( 1999;). Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in staphylococcal isolates. J Clin Microbiol 37, 3411–3414.
    [Google Scholar]
  19. NCCLS ( 2000a;). Performance standards for antimicrobial disk susceptibility tests. Approved Standards, 7th edn. Villanova, PA: National Committee for Clinical Laboratory Standards.
  20. NCCLS ( 2000b;). Methods for dilution antimicrobial susceptibility tests. Approved Standards, 7th edn (M7-A5). Villanova, PA: National Committee for Clinical Laboratory Standards.
  21. Ng, P. C., Lewindon, P. J., Siu, Y. K., Wong, W., Cheung, K. L. & Liu, K. ( 1995;). Bacterial contaminated breast milk and necrotizing enterocolitis in preterm twins. J Hosp Infect 31, 105–110.[CrossRef]
    [Google Scholar]
  22. Nicola, F. G., McDougal, L. K., Biddle, J. W. & Tenover, F. C. ( 1998;). Characterization of erythromycin-resistant isolates of Staphylococcus aureus recovered in the United States from 1958 through 1969. Antimicrob Agents Chemother 42, 3024–3027.
    [Google Scholar]
  23. NNIS ( 2002;). National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 to June 2002, issued August 2002. Am J Infect Control 30, 458–475.[CrossRef]
    [Google Scholar]
  24. Novak, F. R., Almeida, J. A., Warnken, M. B., Ferreira-Carvalho, B. T. & Hagler, A. N. ( 2000a;). Methicillin-resistant Staphylococcus aureus in human milk. Mem Inst Oswaldo Cruz 95, 29–33.
    [Google Scholar]
  25. Novak, F. R., Da Silva, A. V., Hagler, A. N. & Figueiredo, A. M. S. ( 2000b;). Contamination of expressed human breast milk with an epidemic multiresistant Staphylococcus aureus clone. J Med Microbiol 49, 1109–1117.
    [Google Scholar]
  26. Novick, R. P., Schlievert, P. & Ruzin, A. ( 2001;). Pathogenicity and resistance islands of staphylococci. Microbes Infect 3, 585–594.[CrossRef]
    [Google Scholar]
  27. Pfaller, M. A., Acar, J., Jones, R. N., Verhoef, J. J., Turnidge, J. & Sader, H. S. ( 2001;). Integration of molecular characterization of microorganisms in a global antimicrobial resistance surveillance program. Clin Infect Dis 32, S156–S167.[CrossRef]
    [Google Scholar]
  28. Qutaishat, S. S., Stemper, M. E., Spencer, S. K., Borchardt, M. A., Opitz, M. A., Monson, T. A., Anderson, J. L. & Ellingson, J. L. ( 2003;). Transmission of Salmonella enterica serotype typhimurium DT104 to infants through mother's breast milk. Pediatrics 111, 1442–1446.[CrossRef]
    [Google Scholar]
  29. Sambrook, J., Fristch, E. F. & Maniatis, T. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  30. Sharma, N. K., Rees, C. E. D. & Dodd, C. E. R. ( 2000;). Development of a single-reaction multiplex PCR toxin typing assay for Staphylococcus aureus strains. Appl Environ Microbiol 66, 1347–1353.[CrossRef]
    [Google Scholar]
  31. Shaw, K. J., Rather, P. N., Hare, R. S. & Miller, G. H. ( 1993;). Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 57, 138–163.
    [Google Scholar]
  32. Sieradzki K., Villari P. & Tomasz A. ( 1998;). Decreased susceptibilities to teicoplanin and vancomycin among coagulase-negative methicillin-resistant clinical isolates of staphylococci. Antimicrob Agents Chemother 42, 100–107.
    [Google Scholar]
  33. Sohn, A. H., Garrett, D. O., Sinkowitz-Cochran, R. L., Grohskopf, L. A., Levine, G. L., Stover, B. H., Siegel, J. D., Jarvis, W. R. & Pediatric Prevention Network ( 2001;). Prevalence of nosocomial infections in neonatal intensive care unit patients: results from the first national point-prevalence survey. J Pediatr 139, 821–827.[CrossRef]
    [Google Scholar]
  34. Sutcliffe, J., Grebe, T., Tait-Kamradt, A. & Wondrack, L. ( 1996;). Detection of erythromicin-resistant determinants by PCR. Antimicrob Agents Chemother 40, 2562–2566.
    [Google Scholar]
  35. Vanhoof, R., Godard, C., Content, J., Nyssen, H. J. & Hannecart-Pokorni, E. ( 1994;). Detection by polymerase chain reaction of genes encoding aminoglycoside-modifying enzymes in methicillin-resistant Staphylococcus aureus isolates of epidemic phage types. J Med Microbiol 41, 282–290.[CrossRef]
    [Google Scholar]
  36. Weir, E. ( 2002;). Powdered infant formula and fatal infection with Enterobacter sakazakii. Can Med Assoc J 166, 1570. 1570.
    [Google Scholar]
  37. Westh, H., Hougaard, D. M., Vuust, J. & Rosdahl, V. T. ( 1995;). Prevalence of erm gene classes in erythromycin-resistant Staphylococcus aureus strains isolated between 1959 and 1988. Antimicrob Agents Chemother 39, 369–373.[CrossRef]
    [Google Scholar]
  38. York, M. K., Gibbs, L., Chehab, F. & Brooks, G. F. ( 1996;). Comparison of PCR detection of mecA with standard susceptibility testing methods to determine methicillin resistance in coagulase-negative staphylococci. J Clin Microbiol 34, 249–253.
    [Google Scholar]
  39. Youssef, R. F., Darcy, E., Barone, A., Borja, M. T. & Leggiadro, R. J. ( 2002;). Expressed breast milk as a source of neonatal sepsis. Pediatr Infect Dis J 21, 888–889.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05453-0
Loading
/content/journal/jmm/10.1099/jmm.0.05453-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error