1887

Abstract

Production of biofilm in is mediated through enzymes produced by the four-gene operon and is subject to phenotypic variation. The purpose of these experiments was to investigate the regulation of and transcription in phenotypic variants produced by multiple unrelated isolates of . Ten isolates were chosen for the study, four of which contained IS. IS mediates a reversible inactivation of in approximately 30 % of phenotypic variants. All ten strains produced at least two types of phenotypic variant (intermediate and smooth) in which biofilm formation was significantly impaired. Reversion studies indicated that all phenotypic variants were stable after overnight growth, but began to revert to other phenotypic forms after 5 days of incubation at 37 °C. transcriptional analysis was performed on phenotypic variants from three IS-negative isolates; 1457, SE5 and 14765. This analysis demonstrated that transcription was significantly reduced in the majority of phenotypic variants, although two variants from SE5 and 1457 produced wild-type quantities of transcript. Analysis of seven additional phenotypic variants from SE5 revealed that expression was only reduced in three. Expression of transcript was unaffected in all smooth phenotypic variants. Mutations within were identified in two SE5 variants with wild-type levels of transcription. It is concluded that mutation and transcriptional regulation of are the primary mechanisms that govern phenotypic variation of biofilm formation within IS-negative .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05372-0
2004-05-01
2019-12-10
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/5/JM530503.html?itemId=/content/journal/jmm/10.1099/jmm.0.05372-0&mimeType=html&fmt=ahah

References

  1. Aramaki, H., Yagi, N. & Suzuki, M. ( 1995;). Residues important for the function of a multihelical DNA binding domain in the new transcription factor family of Cam and Tet repressors. Protein Eng 8, 1259–1266.[CrossRef]
    [Google Scholar]
  2. Christensen, G. D., Simpson, W. A., Younger, J. J., Baddour, L. M., Barrett, F. F., Melton, D. M. & Beachey, E. H. ( 1985;). Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22, 996–1006.
    [Google Scholar]
  3. Christensen, G. D., Baddour, L. M. & Simpson, W. A. ( 1987;). Phenotypic variation of Staphylococcus epidermidis slime production in vitro and in vivo. Infect Immun 55, 2870–2877.
    [Google Scholar]
  4. Christensen, G. D., Baddour, L. M., Madison, B. M., Parisi, J. T., Abraham, S. N., Hasty, D. L., Lowrance, J. H., Josephs, J. A. & Simpson, W. A. ( 1990;). Colonial morphology of staphylococci on memphis agar: phase variation of slime production, resistance to beta-lactam antibiotics, and virulence. J Infect Dis 161, 1153–1169.[CrossRef]
    [Google Scholar]
  5. Conlon, K. M., Humphreys, H. & O'Gara, J. P. ( 2002a;). Regulation of icaR gene expression in Staphylococcus epidermidis. FEMS Microbiol Lett 216, 171–177.[CrossRef]
    [Google Scholar]
  6. Conlon, K. M., Humphreys, H. & O'Gara, J. P. ( 2002b;). icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J Bacteriol 184, 4400–4408.[CrossRef]
    [Google Scholar]
  7. Cramton, S. E., Gerke, C., Schnell, N. F., Nichols, W. W. & Götz, F. ( 1999;). The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67, 5427–5433.
    [Google Scholar]
  8. Deighton, M. A., Capstick, J. & Borland, R. ( 1992a;). A study of phenotypic variation of Staphylococcus epidermidis using Congo red agar. Epidemiol Infect 109, 423–432.[CrossRef]
    [Google Scholar]
  9. Deighton, M. A., Pearson, S., Capstick, J., Spelman, D. & Borland, R. ( 1992b;). Phenotypic variation of Staphylococcus epidermidis isolated from a patient with native valve endocarditis. J Clin Microbiol 30, 2385–2390.
    [Google Scholar]
  10. Fey, P. D., Ulphani, J. S., Gotz, F., Heilmann, C., Mack, D. & Rupp, M. E. ( 1999;). Characterization of the relationship between polysaccharide intercellular adhesin and hemagglutination in Staphylococcus epidermidis. J Infect Dis 179, 1561–1564.[CrossRef]
    [Google Scholar]
  11. Finan, J. E., Rosato, A. E., Dickinson, T. M., Ko, D. & Archer, G. L. ( 2002;). Conversion of oxacillin-resistant staphylococci from heterotypic to homotypic resistance expression. Antimicrob Agents Chemother 46, 24–30.[CrossRef]
    [Google Scholar]
  12. Freeman, D. J., Falkiner, F. R. & Keane, C. T. ( 1989;). New method for detecting slime production by coagulase-negative staphylococci. J Clin Pathol 42, 872–874.[CrossRef]
    [Google Scholar]
  13. Galetto, D. W., Johnston, L. J. & Archer, G. L. ( 1987;). Molecular epidemiology of trimethoprim-resistance among coagulase-negative staphylococci. Antimicrob Agents Chemother 31, 1683–1688.[CrossRef]
    [Google Scholar]
  14. Götz, F. & Schumacher, B. ( 1987;). Improvements of protoplast transformation in Staphylococcus carnosus. FEMS Microbiol Lett 40, 285–288.[CrossRef]
    [Google Scholar]
  15. Grkovic, S., Brown, M. H., Roberts, N. J., Paulsen, I. T. & Skurray, R. A. ( 1998;). QacR is a repressor protein that regulates expression of the Staphylococcus aureus multidrug efflux pump QacA. J Biol Chem 273, 18665–18673.[CrossRef]
    [Google Scholar]
  16. Hallet, B. ( 2001;). Playing Dr Jekyll and Mr Hyde: combined mechanisms of phase variation in bacteria. Curr Opin Microbiol 4, 570–581.[CrossRef]
    [Google Scholar]
  17. Heilmann, C., Schweitzer, O., Gerke, C., Vanittanakom, N., Mack, D. & Gotz, F. ( 1996;). Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 20, 1083–1091.[CrossRef]
    [Google Scholar]
  18. Heilmann, C., Hussain, M., Peters, G. & Gotz, F. ( 1997;). Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24, 1013–1024.[CrossRef]
    [Google Scholar]
  19. Henderson, I. R., Owen, P. & Nataro, J. P. ( 1999;). Molecular switches–the ON and OFF of bacterial phase variation. Mol Microbiol 33, 919–932.[CrossRef]
    [Google Scholar]
  20. Joyce, J. G., Abeygunawardana, C., Xu, Q. & 18 other authors ( 2003;). Isolation, structural characterization, and immunological evaluation of a high-molecular-weight exopolysaccharide from Staphylococcus aureus. Carbohydr Res 338, 903–922.[CrossRef]
    [Google Scholar]
  21. Knobloch, J. K. M., Bartscht, K., Sabottke, A., Rohde, H., Feucht, H. H. & Mack, D. ( 2001;). Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J Bacteriol 183, 2624–2633.[CrossRef]
    [Google Scholar]
  22. Mack, D., Siemssen, N. & Laufs, R. ( 1992;). Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis: evidence for functional relation to intercellular adhesion. Infect Immun 60, 2048–2057.
    [Google Scholar]
  23. Mack, D., Haeder, M., Siemssen, N. & Laufs, R. ( 1996;). Association of biofilm production of coagulase-negative staphylococci with expression of a specific polysaccharide intercellular adhesin. J Infect Dis 174, 881–884.[CrossRef]
    [Google Scholar]
  24. Mack, D., Riedewald, J., Rohde, H., Magnus, T., Feucht, H. H., Elsner, H. A., Laufs, R. & Rupp, M. E. ( 1999;). Essential functional role of the polysaccharide intercellular adhesin of Staphylococcus epidermidis in hemagglutination. Infect Immun 67, 1004–1008.
    [Google Scholar]
  25. Maira-Litran, T., Kropec, A., Abeygunawardana, C., Joyce, J., Mark, G., III, Goldmann, D. A. & Pier, G. B. ( 2002;). Immunochemical properties of the staphylococcal poly-n-acetylglucosamine surface polysaccharide. Infect Immun 70, 4433–4440.[CrossRef]
    [Google Scholar]
  26. McKenney, D., Pouliot, K. L., Wang, Y., Murthy, V., Ulrich, M., Doring, G., Lee, J. C., Goldmann, D. A. & Pier, G. B. ( 1999;). Broadly protective vaccine for Staphylococcus aureus based on an in vivo-expressed antigen. Science 284, 1523–1527.[CrossRef]
    [Google Scholar]
  27. McKenney, D., Pouliot, K., Wang, Y., Murthy, V., Ulrich, M., Doring, G., Lee, J. C., Goldmann, D. A. & Pier, G. B. ( 2000;). Vaccine potential of poly-1,6 beta-d-N-succinylglucosamine, an immunoprotective surface polysaccharide of Staphylococcus aureus and Staphylococcus epidermidis. J Biotechnol 83, 37–44.[CrossRef]
    [Google Scholar]
  28. Nilsson, M., Frykberg, L., Flock, J. I., Pei, L., Lindberg, M. & Guss, B. ( 1998;). A fibrinogen-binding protein of Staphylococcus epidermidis. Infect Immun 66, 2666–2673.
    [Google Scholar]
  29. Robertson, B. D. & Meyer, T. F. ( 1992;). Genetic variation in pathogenic bacteria. Trends Genet 8, 422–427.[CrossRef]
    [Google Scholar]
  30. Rouch, D. A., Cram, D. S., DiBerardino, D., Littlejohn, T. G. & Skurray, R. A. ( 1990;). Efflux-mediated antiseptic resistance gene qacA from Staphylococcus aureus: common ancestry with tetracycline- and sugar-transport proteins. Mol Microbiol 4, 2051–2062.[CrossRef]
    [Google Scholar]
  31. Rupp, M. E., Sloot, N., Meyer, H. G., Han, J. & Gatermann, S. ( 1995;). Characterization of the hemagglutinin of Staphylococcus epidermidis. J Infect Dis 172, 1509–1518.[CrossRef]
    [Google Scholar]
  32. Rupp, M. E., Ulphani, J. S., Fey, P. D., Bartscht, K. & Mack, D. ( 1999a;). Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial based infection in a mouse foreign body model. Infect Immun 67, 2627–2632.
    [Google Scholar]
  33. Rupp, M. E., Ulphani, J. S., Fey, P. D. & Mack, D. ( 1999b;). Characterization of Staphylococcus epidermidis polysaccharide intercellular adhesin/hemagglutinin in the pathogenesis of intravascular catheter-associated infection in a rat model. Infect Immun 67, 2656–2659.
    [Google Scholar]
  34. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  35. Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. ( 2002;). Biofilms as complex differentiated communities. Annu Rev Microbiol 56, 187–209.[CrossRef]
    [Google Scholar]
  36. Tojo, M., Yamashita, N., Goldmann, D. A. & Pier, G. B. ( 1988;). Isolation and characterization of a capsular polysaccharide adhesin from Staphylococcus epidermidis. J Infect Dis 157, 713–722.[CrossRef]
    [Google Scholar]
  37. van Belkum, A., van Leeuwen, W., Kaufmann, M. E. & 20 other authors ( 1998;). Assessment of resolution and intercenter reproducibility of results of genotyping Staphylococcus aureus by pulsed-field gel electrophoresis of SmaI macrorestriction fragments: a multicenter study. J Clin Microbiol 36, 1653–1659.
    [Google Scholar]
  38. Veenstra, G. J. C., Cremers, F. F. M., Van Dijk, H. & Fleer, A. ( 1996;). Ultrastructural organization and regulation of a biomaterial adhesin of Staphylococcus epidermidis. J Bacteriol 178, 537–541.
    [Google Scholar]
  39. Whiteley, M., Bangera, M. G., Bumgarner, R. E., Parsek, M. R., Teitzel, G. M., Lory, S. & Greenberg, E. P. ( 2001;). Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860–864.[CrossRef]
    [Google Scholar]
  40. Williams, R. J., Henderson, B., Sharp, L. J. & Nair, S. P. ( 2002;). Identification of a fibronectin-binding protein from Staphylococcus epidermidis. Infect Immun 70, 6805–6810.[CrossRef]
    [Google Scholar]
  41. Ziebuhr, W., Heilmann, C., Gotz, F., Meyer, P., Wilms, K., Straube, E. & Hacker, J. ( 1997;). Detection of the intercellular adhesion gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect Immun 65, 890–896.
    [Google Scholar]
  42. Ziebuhr, W., Krimmer, V., Rachid, S., Lößner, I., Götz, F. & Hacker, J. ( 1999;). A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol Microbiol 32, 345–356.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05372-0
Loading
/content/journal/jmm/10.1099/jmm.0.05372-0
Loading

Data & Media loading...

Supplements

Representative colonial forms as observed on CRA. Distinct phenotypes, termed crusty (shown at A), intermediate (B) and smooth (C) were detected after incubation as described in Methods. A biofilm assay was conducted on a representative colony from each colony phenotype. Results in triplicate are shown in panel D.

IMAGE

Percentages of crusty, intermediate and smooth colony phenotypes observed on CRA after 1 and 5 days incubation of one crusty (SE5 Cr), two intermediates (SE5 Int-1 and SE5 Int-2) and one smooth (SE5 Sm) isolates. Alignments of segments of and sequence data obtained from SE5, SE5 PV2, SE5 PV3 and SE5 PV10. Enrichment assay as performed on smooth phenotypic variants SE5 PV2, SE5 PV3 and SE5 PV10. Reversion values, indicating percentages of colonies that were biofilm-positive as assessed by colony phenotype on CRA, were plotted for each day of the study. Overall, 17 broth passages were performed. Biofilm production by strain SE5 and phenotypic variant isolates [PDF of Table and Figs B–D]

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error