1887

Abstract

Bovine lactoferrin (BLf) and its derivative peptide lactoferricin B (LfcinB) are known for their antimicrobial activity towards several pathogens, including , a food-borne Gram-positive invasive bacterium that infects a wide variety of host cells, including professional phagocytes. To add further information on the antibacterial effects of these compounds, the influence of BLf, LfcinB and the antimicrobial centre of LfcinB, the hexapeptide LfcinB, on the invasive behaviour of was analysed in IFN-γ-activated human macrophagic cells (THP-1). Significant inhibition of bacterial entry in THP-1 cells was observed at LfcinB concentrations that were unable to produce any bacteriostatic or bactericidal effect, compared with BLf and LfcinB peptide. This inhibition occurred when LfcinB was incubated during the bacterial infection step and was not due only to competition for common glycosaminoglycan receptors. Assays performed through a temperature shift from 4 to 37 °C showed that inhibition of invasion took place at an early post-adsorption step, although an effect on a different step of intracellular infection could not be ruled out.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05367-0
2004-02-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/2/JM530201.html?itemId=/content/journal/jmm/10.1099/jmm.0.05367-0&mimeType=html&fmt=ahah

References

  1. Alvarez-Dominguez, C., Carrasco-Marin, E. & Leyva-Cobian, F. ( 1993;). Role of complement component C1q in phagocytosis of Listeria monocytogenes by murine macrophage-like cell lines. Infect Immun 61, 3664–3672.
    [Google Scholar]
  2. Alvarez-Dominguez, C., Vazquez-Boland, J. A., Carrasco-Marin, E., Lopez-Mato, P. & Leyva-Cobian, F. ( 1997;). Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect Immun 65, 78–88.
    [Google Scholar]
  3. Antonini, G., Catania, M. R., Greco, R., Longhi, C., Pisciotta, M. G., Seganti, L. & Valenti, P. ( 1997;). Anti-invasive activity of bovine lactoferrin against Listeria monocytogenes. J Food Prot 60, 1–5.
    [Google Scholar]
  4. Appelmelk, B. J., An, Y.-Q., Geerts, M., Thijs, B. G., de Boer, H. A., MacLaren, D. M., de Graaf, J. & Nuijens, J. H. ( 1994;). Lactoferrin is a lipid A-binding protein. Infect Immun 62, 2628–2632.
    [Google Scholar]
  5. Arnold, R. R., Brewer, M. & Gauthier, J. J. ( 1980;). Bactericidal activity of human lactoferrin: sensitivity of a variety of microorganisms. Infect Immun 28, 893–898.
    [Google Scholar]
  6. Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., Kawase, K. & Tomita, M. ( 1992;). Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta 1121, 130–136.[CrossRef]
    [Google Scholar]
  7. Branen, J. & Davidson, P. M. ( 2000;). Activity of hydrolysed lactoferrin against foodborne pathogenic bacteria in growth media: the effect of EDTA. Lett Appl Microbiol 30, 233–237.[CrossRef]
    [Google Scholar]
  8. Conte, M. P., Longhi, C., Petrone, G., Polidoro, M., Valenti, P. & Seganti, L. ( 1994;). Listeria monocytogenes infection of Caco-2 cells: role of growth temperature. Res Microbiol 145, 677–682.[CrossRef]
    [Google Scholar]
  9. Conte, M. P., Longhi, C., Petrone, G., Buonfiglio, V., Di Santo, S., Seganti, L. & Valenti, P. ( 1999;). The anti-invasive effect of bovine lactoferrin requires an interaction with surface proteins of Listeria monocytogenes. Int J Immunopathol Pharmacol 12, 149–155.
    [Google Scholar]
  10. Conte, M. P., Petrone, G., Di Biase, A. M. & 7 other authors ( 2002;). Effect of acid adaptation on the fate of Listeria monocytogenes in THP-1 human macrophages activated by gamma interferon. Infect Immun 70, 4369–4378.[CrossRef]
    [Google Scholar]
  11. Drevets, D. A., Leenen, P. J. M. & Campbell, P. A. ( 1993;). Complement receptor type 3 (CD11b/CD18) involvement is essential for killing of Listeria monocytogenes by mouse macrophages. J Immunol 151, 5431–5439.
    [Google Scholar]
  12. Elass-Rochard, E., Roseanu, A., Legrand, D., Trif, M., Salmon, V., Motas, C., Montreuil, J. & Spik, G. ( 1995;). Lactoferrin–lipopolysaccharide interactions: involvement of the 23–34 loop region of human lactoferrin in the high-affinity binding to Escherichia coli O55B5 lipopolysaccharide. Biochem J 312, 839–845.
    [Google Scholar]
  13. Henry-Stanley, M. J., Hess, D. J., Erickson, E. A., Garni, R. M. & Wells, C. L. ( 2003;). Role of heparan sulfate in interactions of Listeria monocytogenes with enterocytes. Med Microbiol Immunol 192, 107–115.
    [Google Scholar]
  14. Hwang, P. M., Zhou, N., Shan, X., Arrowsmith, C. H. & Voegel, H. J. ( 1998;). Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry 37, 4288–4298.[CrossRef]
    [Google Scholar]
  15. Moriishi, K., Inoue, S., Koura, M. & Amano, F. ( 1999;). Inhibition of listeriolysin O-induced hemolysis by bovine lactoferrin. Biol Pharm Bull 22, 1167–1172.[CrossRef]
    [Google Scholar]
  16. Payne, K. D., Davidson, P. M., Oliver, S. P. & Christen, G. L. ( 1990;). Influence of bovine lactoferrin on the growth of Listeria monocytogenes. J Food Prot 53, 468–472.
    [Google Scholar]
  17. Pierce, M. M., Gibson, R. E. & Rodgers, F. G. ( 1996;). Opsonin-independent adherence and phagocytosis of Listeria monocytogenes by murine peritoneal macrophages. J Med Microbiol 45, 258–262.[CrossRef]
    [Google Scholar]
  18. Schibli, D. J., Hwang, P. M. & Vogel, H. J. ( 1999;). The structure of the antimicrobial active center of lactoferricin B bound to sodium dodecyl sulfate micelles. FEBS Lett 446, 213–217.[CrossRef]
    [Google Scholar]
  19. Shimazaki, K., Tazume, T., Uji, K., Tanaka, M., Kumura, H., Mikawa, K. & Shimo-Oka, T. ( 1998;). Properties of a heparin-binding peptide derived from bovine lactoferrin. J Dairy Sci 81, 2841–2849.[CrossRef]
    [Google Scholar]
  20. Tomita, M., Bellamy, W., Takase, M., Bellamy, W. & Shimamura, S. ( 1994;). A review: the active peptide of lactoferrin. Acta Pediatr Jpn 36, 585–591.[CrossRef]
    [Google Scholar]
  21. Vazquez-Boland, J. A., Kuhn, M., Berche, P., Chakraborty, T., Dominguez-Bernal, G., Goebel, W., Gonzalez-Zorn, B., Wehland, J. & Kreft, J. ( 2001;). Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14, 584–640.[CrossRef]
    [Google Scholar]
  22. Vorland, L. H. ( 1999;). Lactoferrin: a multifunctional glycoprotein. APMIS 107, 971–981.[CrossRef]
    [Google Scholar]
  23. Yoo, Y. C., Watanabe, R., Koike, Y., Mitobe, M., Shimazaki, K., Watanabe, S. & Azuma, I. ( 1997;). Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-derived peptide: involvement of reactive oxygen species. Biochem Biophys Res Commun 237, 624–628.#Z[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05367-0
Loading
/content/journal/jmm/10.1099/jmm.0.05367-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error