1887

Abstract

In order to improve our understanding of the colonization of the pulmonary tract of cystic fibrosis (CF) patients by , 162 isolates from five different ecological origins were studied. The genetic features of each isolate were determined by random amplification of polymorphic DNA (RAPD) and by searching for eight virulence genes (six known virulence genes, , , , , and , and two genes encoding putative neuraminidases, and ). Five RAPD groups were identified. Most of the CF isolates were distributed equally in three of these groups (RA, RB and RC). The CF isolates in RB were related to isolates from a wide variety of origins. The CF isolates in RA were related to a population composed of 65 % of the non-CF isolates from pulmonary tract infections. RC was mainly composed of CF isolates that were related to 30 % of isolates from plants. All genes except and were present in all isolates. The and virulence factor genes were most prevalent in CF isolates. , which encodes exoenzyme S, was present in 94 % of CF isolates but also in 80 % of non-CF isolates from pulmonary tract infections. , which encodes a putative neuraminidase, was found in 82.5 % of the isolates from group RC, which was composed largely of CF isolates. In conclusion, three major genogroups of isolates, each of which exhibits peculiar genetic features, are able to colonize CF patients. This may have different consequences on the outcome of pulmonary disease.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05324-0
2004-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/1/JM530112.html?itemId=/content/journal/jmm/10.1099/jmm.0.05324-0&mimeType=html&fmt=ahah

References

  1. Boukadida J., De Montalembert M., Lenoir G., Scheinmann P., Veron M., Berche P. 1993; Molecular epidemiology of chronic pulmonary colonisation by Pseudomonas aeruginosa in cystic fibrosis. J Med Microbiol 38:29–33 [CrossRef]
    [Google Scholar]
  2. Brenner D. J., McWhorter A. C., Knutson J. K., Steigerwalt A. G. 1982; Escherichia vulneris : a new species of Enterobacteriaceae associated with human wounds. J Clin Microbiol 15:1133–1140
    [Google Scholar]
  3. Bryan R., Kube D., Perez A., Davis P., Prince A. 1998; Overproduction of the CFTR R domain leads to increased levels of asialoGM1 and increased Pseudomonas aeruginosa binding by epithelial cells. Am J Respir Cell Mol Biol 19:269–277 [CrossRef]
    [Google Scholar]
  4. Cacalano G., Kays M., Saiman L., Prince A. 1992; Production of the Pseudomonas aeruginosa neuraminidase is increased under hyperosmolar conditions and is regulated by genes involved in alginate expression. J Clin Invest 89:1866–1874 [CrossRef]
    [Google Scholar]
  5. Crennell S. J., Garman E. F., Laver W. G., Vimr E. R., Taylor G. L. 1993; Crystal structure of a bacterial sialidase (from Salmonella typhimurium LT2) shows the same fold as an influenza virus neuraminidase. Proc Natl Acad Sci U S A 90:9852–9856 [CrossRef]
    [Google Scholar]
  6. Dacheux D., Toussaint B., Richard M., Brochier G., Croize J., Attree I. 2000; Pseudomonas aeruginosa cystic fibrosis isolates induce rapid, type III secretion-dependent, but ExoU-independent, oncosis of macrophages and polymorphonuclear neutrophils. Infect Immun 68:2916–2924 [CrossRef]
    [Google Scholar]
  7. Davies J., Dewar A., Bush A., Pitt T., Gruenert D., Geddes D. M., Alton E. W. 1999; Reduction in the adherence of Pseudomonas aeruginosa to native cystic fibrosis epithelium with anti-asialoGM1 antibody and neuraminidase inhibition. Eur Respir J 13:565–570 [CrossRef]
    [Google Scholar]
  8. de Bentzmann S., Roger P., Dupuit F., Bajolet-Laudinat O., Fuchey C., Plotkowski M. C., Puchelle E. 1996; Asialo GM1 is a receptor for Pseudomonas aeruginosa adherence to regenerating respiratory epithelial cells. Infect Immun 64:1582–1588
    [Google Scholar]
  9. Denamur E., Picard B., Decoux G., Denis J. B., Elion J. 1993; The absence of correlation between allozyme and rrn RFLP analysis indicates a high gene flow rate within human clinical Pseudomonas aeruginosa isolates. FEMS Microbiol Lett 110:275–280 [CrossRef]
    [Google Scholar]
  10. Feltman H., Schulert G., Khan S., Jain M., Peterson L., Hauser A. R. 2001; Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa . Microbiology 147:2659–2669
    [Google Scholar]
  11. Ferguson M. W., Maxwell J. A., Vincent T. S., da Silva J., Olson J. C. 2001; Comparison of the exoS gene and protein expression in soil and clinical isolates of Pseudomonas aeruginosa . Infect Immun 69:2198–2210 [CrossRef]
    [Google Scholar]
  12. Foght J. M., Westlake D. W. S., Johnson W. M., Ridgway H. F. 1996; Environmental gasoline-utilizing isolates and clinical isolates of Pseudomonas aeruginosa are taxonomically indistinguishable by chemotaxonomic and molecular techniques. Microbiology 142:2333–2340 [CrossRef]
    [Google Scholar]
  13. Govan J. R., Deretic V. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia . Microbiol Rev 60:539–574
    [Google Scholar]
  14. Hoogkamp-Korstanje J. A., Meis J. F., Kissing J., van der Laag J., Melchers W. J. 1995; Risk of cross-colonization and infection by Pseudomonas aeruginosa in a holiday camp for cystic fibrosis patients. J Clin Microbiol 33:572–575
    [Google Scholar]
  15. Imundo L., Barasch J., Prince A., Al-Awqati Q. 1995; Cystic fibrosis epithelial cells have a receptor for pathogenic bacteria on their apical surface. Proc Natl Acad Sci U S A 92:3019–3023 [CrossRef]
    [Google Scholar]
  16. Jaffar-Bandjee M. C., Lazdunski A., Bally M., Carrere J., Chazalette J. P., Galabert C. 1995; Production of elastase, exotoxin A, and alkaline protease in sputa during pulmonary exacerbation of cystic fibrosis in patients chronically infected by Pseudomonas aeruginosa . J Clin Microbiol 33:924–929
    [Google Scholar]
  17. Kiewitz C., Tummler B. 2000; Sequence diversity of Pseudomonas aeruginosa : impact on population structure and genome evolution. J Bacteriol 182:3125–3135 [CrossRef]
    [Google Scholar]
  18. Konig B., Vasil M. L., Konig W. 1997; Role of haemolytic and non-haemolytic phospholipase C from Pseudomonas aeruginosa in interleukin-8 release from human monocytes. J Med Microbiol 46:471–478 [CrossRef]
    [Google Scholar]
  19. Kosorok M. R., Jalaluddin M., Farrell P. M., Shen G., Colby C. E., Laxova A., Rock M. J., Splaingard M. 1998; Comprehensive analysis of risk factors for acquisition of Pseudomonas aeruginosa in young children with cystic fibrosis. Pediatr Pulmonol 26:81–88 [CrossRef]
    [Google Scholar]
  20. Lomholt J. A., Poulsen K., Kilian M. 2001; Epidemic population structure of Pseudomonas aeruginosa : evidence for a clone that is pathogenic to the eye and that has a distinct combination of virulence factors. Infect Immun 69:6284–6295 [CrossRef]
    [Google Scholar]
  21. Mahenthiralingam E., Campbell M. E., Foster J., Lam J. S., Speert D. P. 1996; Random amplified polymorphic DNA typing of Pseudomonas aeruginosa isolates recovered from patients with cystic fibrosis. J Clin Microbiol 34:1129–1135
    [Google Scholar]
  22. Martin C., Boyd E. F., Quentin R., Massicot P., Selander R. K. 1999; Enzyme polymorphism in Pseudomonas aeruginosa strains recovered from cystic fibrosis patients in France. Microbiology 145:2587–2594
    [Google Scholar]
  23. Maynard Smith J., Smith N. H., O'Rourke M., Spratt B. G. 1993; How clonal are bacteria?. Proc Natl Acad Sci U S A 90:4384–4388 [CrossRef]
    [Google Scholar]
  24. Ojeniyi B., Frederiksen B., Hoiby N. 2000; Pseudomonas aeruginosa cross-infection among patients with cystic fibrosis during a winter camp. Pediatr Pulmonol 29:177–181 [CrossRef]
    [Google Scholar]
  25. Ostroff R. M., Vasil A. I., Vasil M. L. 1990; Molecular comparison of a nonhemolytic and a hemolytic phospholipase C from Pseudomonas aeruginosa . J Bacteriol 172:5915–5923
    [Google Scholar]
  26. Pirnay J. P., De Vos D., Cochez C., Bilocq F., Vanderkelen A., Zizi M., Ghysels B., Cornelis P. 2002; Pseudomonas aeruginosa displays an epidemic population structure. Environ Microbiol 4:898–911 [CrossRef]
    [Google Scholar]
  27. Renders N., Romling Y., Verbrugh H., van Belkum A. 1996; Comparative typing of Pseudomonas aeruginosa by random amplification of polymorphic DNA or pulsed-field gel electrophoresis of DNA macrorestriction fragments. J Clin Microbiol 34:3190–3195
    [Google Scholar]
  28. Roggentin P., Rothe B., Kaper J. B., Galen J., Lawrisuk L., Vimr E. R., Schauer R. 1989; Conserved sequences in bacterial and viral sialidases. Glycoconj J 6:349–353 [CrossRef]
    [Google Scholar]
  29. Roggentin P., Schauer R., Hoyer L. L., Vimr E. R. 1993; The sialidase superfamily and its spread by horizontal gene transfer. Mol Microbiol 9:915–921 [CrossRef]
    [Google Scholar]
  30. Romling U., Fiedler B., Bosshammer J., Grothues D., Greipel J., von der Hardt H., Tummler B. 1994; Epidemiology of chronic Pseudomonas aeruginosa infections in cystic fibrosis. J Infect Dis 170:1616–1621 [CrossRef]
    [Google Scholar]
  31. Ruimy R., Genauzeau E., Barnabe C., Beaulieu A., Tibayrenc M., Andremont A. 2001; Genetic diversity of Pseudomonas aeruginosa strains isolated from ventilated patients with nosocomial pneumonia, cancer patients with bacteremia, and environmental water. Infect Immun 69:584–588 [CrossRef]
    [Google Scholar]
  32. Saiman L., Prince A. 1993; Pseudomonas aeruginosa pili bind to asialoGM1 which is increased on the surface of cystic fibrosis epithelial cells. J Clin Invest 92:1875–1880 [CrossRef]
    [Google Scholar]
  33. Saiman L., Cacalano G., Gruenert D., Prince A. 1992; Comparison of adherence of Pseudomonas aeruginosa to respiratory epithelial cells from cystic fibrosis patients and healthy subjects. Infect Immun 60:2808–2814
    [Google Scholar]
  34. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  35. Schaffer H. E., Sederoff R. R. 1981; Improved estimation of DNA fragment lengths from agarose gels. Anal Biochem 115:113–122 [CrossRef]
    [Google Scholar]
  36. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S. 1986; Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51:873–884
    [Google Scholar]
  37. Shwachman H., Kulczycki L. L., Khaw K. T. 1965; A report on sixty-five patients over 17 years of age. Pediatrics 36:689–699
    [Google Scholar]
  38. Sneath P. H. A., Sokal R. R. 1973 Numerical Taxonomy . The Principle and Practice of Numerical Classification San Francisco: W. H. Freeman;
    [Google Scholar]
  39. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517 [CrossRef]
    [Google Scholar]
  40. Stover C. K., Pham X. Q., Erwin A. L. 28 other authors; 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964 [CrossRef]
    [Google Scholar]
  41. Taylor G. 1996; Sialidases: structures, biological significance and therapeutic potential. Curr Opin Struct Biol 6:830–837 [CrossRef]
    [Google Scholar]
  42. Tredgett M. W., Doherty C., Govan J. R. W. 1990; Incidence of common pyocin types of Pseudomonas aeruginosa from patients with cystic fibrosis and chronic airways diseases. J Med Microbiol 32:169–172 [CrossRef]
    [Google Scholar]
  43. Tummler B., Koopmann U., Grothues D., Weissbrodt H., Steinkamp G., von der Hardt H. 1991; Nosocomial acquisition of Pseudomonas aeruginosa by cystic fibrosis patients. J Clin Microbiol 29:1265–1267
    [Google Scholar]
  44. Van Delden C., Iglewski B. H. 1998; Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560 [CrossRef]
    [Google Scholar]
  45. Vimr E. R. 1994; Microbial sialidases: does bigger always mean better?. Trends Microbiol 2:271–277 [CrossRef]
    [Google Scholar]
  46. Wang G., Whittam T. S., Berg C. M., Berg D. E. 1993; RAPD (arbitrary primer) PCR is more sensitive than multilocus enzyme electrophoresis for distinguishing related bacterial strains. Nucleic Acids Res 21:5930–5933 [CrossRef]
    [Google Scholar]
  47. Yahr T. L., Hovey A. K., Kulich S. M., Frank D. W. 1995; Transcriptional analysis of the Pseudomonas aeruginosa exoenzyme S structural gene. J Bacteriol 177:1169–1178
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05324-0
Loading
/content/journal/jmm/10.1099/jmm.0.05324-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error