1887

Abstract

polysaccharide and protein-conjugate vaccines are available against the most commonly isolated pneumococcal serotypes. Ongoing surveillance of invasive pneumococcal disease is needed in order to monitor changes in distribution of serotypes. Based on previously published sequences of capsular polysaccharide synthesis () gene clusters of 16 pneumococcal serotypes, a molecular capsular typing (MCT) system has been developed, based on a combination of partial sequencing and serotype- or serogroup-specific PCR, targeting the genes and (except for serotype 3). In this study, 151 isolates of known serotype (representing 51 serotypes) and 276 recent clinical isolates were used to develop MCT and compare it with conventional serotyping (CS) (total 427 isolates). On the basis of 376 heterogeneity sites in the region, 89 sequence types (ST) were identified, of which 76 corresponded to a single serotype and 11 contained two serotypes. The correct serotypes in two of the latter (10A-23F-g and 23F-23A) were identified using serotype 23F-specific PCR. Limited CS was required for 92 (22 %) isolates to distinguish between the two serotypes in the nine other mixed ST (6A–6B-g, 6A–6B-q, 15B–22F, 33F–33A, 17F–35B, 18B–18C, 13–20, 25F–38, 31–42). MCT is a specific, objective and practical method that can predict the serotype of most isolates; it will facilitate epidemiological studies. Further study of the relationship between MCT and CS is needed in order to improve our understanding of serotype differentiation and to improve MCT methods further.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05277-0
2003-12-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/12/JM521203.html?itemId=/content/journal/jmm/10.1099/jmm.0.05277-0&mimeType=html&fmt=ahah

References

  1. Ahmet, Z., Stanier, P., Harvey, D. & Holt, D. ( 1999;). New PCR primers for the sensitive detection and specific identification of group B β-hemolytic streptococci in cerebrospinal fluid. Mol Cell Probes 13, 349–357.[CrossRef]
    [Google Scholar]
  2. Arai, S., Konda, T., Wad, A., Matsunaga, Y., Okabe, N., Watanabe, H. & Inouye, S. ( 2001;). Use of antiserum-coated latex particles for serotyping Streptococcus pneumoniae. Microbiol Immunol 45, 159–162.[CrossRef]
    [Google Scholar]
  3. Arrecubieta, C., Lopez, R. & Garcia, E. ( 1996;). Type 3-specific synthase of Streptococcus pneumoniae (Cap3B) directs type 3 polysaccharide biosynthesis in Escherichia coli and in pneumococcal strains of different serotypes. J Exp Med 184, 449–455.[CrossRef]
    [Google Scholar]
  4. Barker, J. H., Musher, D. M., Silberman, R., Phan, H. M. & Watson, D. A. ( 1999;). Genetic relatedness among nontypeable pneumococci implicated in sporadic cases of conjunctivitis. J Clin Microbiol 37, 4039–4041.
    [Google Scholar]
  5. Brito, D. A., Ramirez, M. & de Lencastre, H. ( 2003;). Serotyping Streptococcus pneumoniae by multiplex PCR. J Clin Microbiol 41, 2378–2384.[CrossRef]
    [Google Scholar]
  6. Coffey, T. J., Enright, M. C., Daniels, M., Morona, J. K., Morona, R., Hryniewicz, W., Paton, J. C. & Spratt, B. G. ( 1998;). Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Mol Microbiol 27, 73–83.[CrossRef]
    [Google Scholar]
  7. Colman, G., Cooke, E. M., Cookson, B. D., Cooper, P. G., Efstratiou, A. & George, R. C. ( 1998;). Pneumococci causing invasive disease in Britain 1982–1990. J Med Microbiol 47, 17–27.[CrossRef]
    [Google Scholar]
  8. Garcia, E., Llull, D., Munoz, R., Mollerach, M. & Lopez, R. ( 2000;). Current trends in capsular polysaccharide biosynthesis of Streptococcus pneumoniae. Res Microbiol 151, 429–435.[CrossRef]
    [Google Scholar]
  9. Gillespie, S. H. ( 1999;). The role of the molecular laboratory in the investigation of Streptococcus pneumoniae infections. Semin Respir Infect 14, 269–275.
    [Google Scholar]
  10. Hall, L. M. ( 1998;). Application of molecular typing to the epidemiology of Streptococcus pneumoniae. J Clin Pathol 51, 270–274.[CrossRef]
    [Google Scholar]
  11. Hausdorff, W. P., Siber, G. & Paradiso, P. R. ( 2001;). Geographical differences in invasive pneumococcal disease rates and serotype frequency in young children. Lancet 357, 950–952.[CrossRef]
    [Google Scholar]
  12. Heidelberger, M. ( 1983;). Precipitating cross-reactions among pneumococcal types. Infect Immun 41, 1234–1244.
    [Google Scholar]
  13. Henrichsen, J. ( 1995;). Six newly recognized types of Streptococcus pneumoniae. J Clin Microbiol 33, 2759–2762.
    [Google Scholar]
  14. Henrichsen, J. ( 1999;). Typing of Streptococcus pneumoniae: past, present, and future. Am J Med 107, 50S–54S.[CrossRef]
    [Google Scholar]
  15. Huebner, R. E., Wasas, A. D. & Klugman, K. P. ( 2000;). Prevalence of nasopharyngeal antibiotic-resistant pneumococcal carriage in children attending private paediatric practices in Johannesburg.Paediatric Study Group. S Afr Med J 90, 1116–1121.
    [Google Scholar]
  16. Jiang, S. M., Wang, L. & Reeves, P. R. ( 2001;). Molecular characterization of Streptococcus pneumoniae type 4, 6B, 8, and 18C capsular polysaccharide gene clusters. Infect Immun 69, 1244–1255.[CrossRef]
    [Google Scholar]
  17. Kong, F., Zhu, X., Wang, W., Zhou, X., Gordon, S. & Gilbert, G. L. ( 1999;). Comparative analysis and serovar-specific identification of multiple-banded antigen genes of Ureaplasma urealyticum biovar 1. J Clin Microbiol 37, 538–543.
    [Google Scholar]
  18. Kong, F., Gowan, S., Martin, D., James, G. & Gilbert, G. L. ( 2002;). Serotype identification of group B streptococci by PCR and sequencing. J Clin Microbiol 40, 216–226.[CrossRef]
    [Google Scholar]
  19. Kumar, A., Mariappuram, J. & Kim, C. H. ( 1985;). Discrepancies in fluorescent antibody, counterimmunoelectrophoresis, and Neufeld test for typing of Streptococcus pneumoniae. Diagn Microbiol Infect Dis 3, 509–514.[CrossRef]
    [Google Scholar]
  20. Lalitha, M. K., Thomas, K., Kumar, R. S. & Steinhoff, M. C. ( 1999;). Serotyping of Streptococcus pneumoniae by coagglutination with 12 pooled antisera. J Clin Microbiol 37, 263–265.
    [Google Scholar]
  21. Lawrence, E. R., Arias, C. A., Duke, B., Beste, D., Broughton, K., Efstratiou, A., George, R. C. & Hall, L. M. ( 2000;). Evaluation of serotype prediction by cpsA-cpsB gene polymorphism in Streptococcus pneumoniae. J Clin Microbiol 38, 1319–1323.
    [Google Scholar]
  22. Lawrence, E. R., Griffiths, D. B., Martin, S. A., George, R. C. & Hall, L. M. ( 2003;). Evaluation of semiautomated multiplex PCR assay for determination of Streptococcus pneumoniae serotypes and serogroups. J Clin Microbiol 41, 601–607.[CrossRef]
    [Google Scholar]
  23. Lipsitch, M. ( 2001;). Interpreting results from trials of pneumococcal conjugate vaccines: a statistical test for detecting vaccine-induced increases in carriage of nonvaccine serotypes. Am J Epidemiol 154, 85–92.
    [Google Scholar]
  24. Llull, D., Munoz, R., Lopez, R. & Garcia, E. ( 1999;). A single gene (tts) located outside the cap locus directs the formation of Streptococcus pneumoniae type 37 capsular polysaccharide.Type 37 pneumococci are natural, genetically binary strains. J Exp Med 190, 241–251.[CrossRef]
    [Google Scholar]
  25. Magee, J. T., Fox, J. D. & Stubbs, S. L. ( 2001;). Cashing in your chips: speculation on the future of diagnostic laboratories in the era of DNA chips. J Med Microbiol 50, 111–115.
    [Google Scholar]
  26. Morona, J. K., Morona, R., Miller, D. C. & Paton, J. C. ( 2002;). Streptococcus pneumoniae capsule biosynthesis protein CpsB is a novel manganese-dependent phosphotyrosine-protein phosphatase. J Bacteriol 184, 577–583.[CrossRef]
    [Google Scholar]
  27. Morrison, K. E., Lake, D., Crook, J., Carlone, G. M., Ades, E., Facklam, R. & Sampson, J. S. ( 2000;). Confirmation of psaA in all 90 serotypes of Streptococcus pneumoniae by PCR and potential of this assay for identification and diagnosis. J Clin Microbiol 38, 434–437.
    [Google Scholar]
  28. Ortqvist, A. ( 2001;). Pneumococcal vaccination: current and future issues. Eur Respir J 18, 184–195.[CrossRef]
    [Google Scholar]
  29. Rubins, J. B., Alter, M., Loch, J. & Janoff, E. N. ( 1999;). Determination of antibody responses of elderly adults to all 23 capsular polysaccharides after pneumococcal vaccination. Infect Immun 67, 5979–5984.
    [Google Scholar]
  30. Salo, P., Ortqvist, A. & Leinonen, M. ( 1995;). Diagnosis of bacteremic pneumococcal pneumonia by amplification of pneumolysin gene fragment in serum. J Infect Dis 171, 479–482.[CrossRef]
    [Google Scholar]
  31. Sorensen, U. B. ( 1993;). Typing of pneumococci by using 12 pooled antisera. J Clin Microbiol 31, 2097–2100.
    [Google Scholar]
  32. van Selm, S., Kolkman, M. A. B., van der Zeijst, B. A. M., Zwaagstra, K. A., Gaastra, W. & van Putten, J. P. M. ( 2002;). Organization and characterization of the capsule biosynthesis locus of Streptococcus pneumoniae serotype 9V. Microbiology 148, 1747–1755.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05277-0
Loading
/content/journal/jmm/10.1099/jmm.0.05277-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error