1887

Abstract

The aim of this study was to investigate the diversity and composition of the intestinal microbiota of elderly subjects using a combination of culture-dependent techniques and 16S rRNA gene amplicon sequencing. The study was performed as part of the ELDERMET project, in which 368 faecal samples were assessed for viable numbers of spp., spp. and on selective agar. However, the selective medium used also supported the growth of , which appeared as distinct colonies and were subsequently characterized phenotypically and genotypically. All the isolates were confirmed as toxin biotype A producers. In addition, three isolates tested also had the genetic determinants for the β2 toxin. Of the 368 faecal samples assessed, was detected in 28 samples (7.6 %). Moreover, was observed in samples from subjects in all the residence locations assessed but was most prevalent in subjects from long-stay residential care, with 71.4 % of the samples (63.2 % of the subjects) being from this residence location, and with a shedding level in excess of 10 c.f.u. (g faeces). Microbiota profiling revealed some significant compositional changes across both the family and genus taxonomic levels between the -positive and -negative datasets. Levels of culturable spp. and spp. were significantly (<0.05) lower in the -positive samples. Sequence-based methods also confirmed a significant difference in the spp. level (<0.05) between both datasets. Taken together, these data suggest that a high viable count [>10 c.f.u. (g faeces)] of in stool samples may be indicative of a less healthy microbiota in the intestine of elderly people in long-stay residential care.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.052258-0
2013-03-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/3/457.html?itemId=/content/journal/jmm/10.1099/jmm.0.052258-0&mimeType=html&fmt=ahah

References

  1. Aureli P. , Capurso L. , Castellazzi A. M. , Clerici M. , Giovannini M. , Morelli L. , Poli A. , Pregliasco F. , Salvini F. , Zuccotti G. V. . ( 2011; ). Probiotics and health: an evidence-based review. . Pharmacol Res 63:, 366–376. [CrossRef] [PubMed]
    [Google Scholar]
  2. Beerens H. . ( 1990; ). An elective and selective isolation medium for Bifidobacterium spp. . Lett Appl Microbiol 11:, 155–157. [CrossRef]
    [Google Scholar]
  3. Benjamini Y. , Hochberg Y. . ( 1995; ). Controlling the false discovery rate: a practical and powerful approach to multiple testing. . J R Stat Soc Series B Stat Methodol 57:, 289–300.
    [Google Scholar]
  4. Benno Y. , Endo K. , Mizutani T. , Namba Y. , Komori T. , Mitsuoka T. . ( 1989; ). Comparison of fecal microflora of elderly persons in rural and urban areas of Japan. . Appl Environ Microbiol 55:, 1100–1105.[PubMed]
    [Google Scholar]
  5. Biagi E. , Nylund L. , Candela M. , Ostan R. , Bucci L. , Pini E. , Nikkïla J. , Monti D. , Satokari R. . & other authors ( 2010; ). Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. . PLoS ONE 5:, e10667. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bibiloni R. , Pérez P. F. , De Antoni G. L. . ( 2000; ). An enzymatic-colorimetric assay for the quantification of Bifidobacterium . . J Food Prot 63:, 322–326.[PubMed]
    [Google Scholar]
  7. Buchanan A. G. . ( 1982; ). Clinical laboratory evaluation of a reverse CAMP test for presumptive identification of Clostridium perfringens . . J Clin Microbiol 16:, 761–762.[PubMed]
    [Google Scholar]
  8. Carman R. J. , Sayeed S. , Li J. , Genheimer C. W. , Hiltonsmith M. F. , Wilkins T. D. , McClane B. A. . ( 2008; ). Clostridium perfringens toxin genotypes in the feces of healthy North Americans. . Anaerobe 14:, 102–108. [CrossRef] [PubMed]
    [Google Scholar]
  9. Claesson M. J. , O’Sullivan O. , Wang Q. , Nikkilä J. , Marchesi J. R. , Smidt H. , de Vos W. M. , Ross R. P. , O’Toole P. W. . ( 2009; ). Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. . PLoS ONE 4:, e6669. [CrossRef] [PubMed]
    [Google Scholar]
  10. Claesson M. J. , Wang Q. , O’Sullivan O. , Greene-Diniz R. , Cole J. R. , Ross R. P. , O’Toole P. W. . ( 2010; ). Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. . Nucleic Acids Res 38:, e200. [CrossRef] [PubMed]
    [Google Scholar]
  11. Claesson M. J. , Cusack S. , O’Sullivan O. , Greene-Diniz R. , de Weerd H. , Flannery E. , Marchesi J. R. , Falush D. , Dinan T. . & other authors ( 2011; ). Composition, variability, and temporal stability of the intestinal microbiota of the elderly. . Proc Natl Acad Sci U S A 108: (Suppl. 1), 4586–4591. [CrossRef] [PubMed]
    [Google Scholar]
  12. Claesson M. J. , Jeffery I. B. , Conde S. , Power S. E. , O’Connor E. M. , Cusack S. , Harris H. M. B. , Coakley M. , Lakshminarayanan B. . & other authors ( 2012; ). Gut microbiota composition correlates with diet and health in the elderly. . Nature 488:, 178–184. [CrossRef] [PubMed]
    [Google Scholar]
  13. Coakley M. , Donnelly D. , Ross R. . ( 1996; ). Application of the polymerised chain reaction to the rapid analysis of brewery yeast strains. . J Inst Brew 102:, 349–354.[CrossRef]
    [Google Scholar]
  14. Duncan C. L. , Strong D. H. . ( 1968; ). Improved medium for sporulation of Clostridium perfringens . . Appl Microbiol 16:, 82–89.[PubMed]
    [Google Scholar]
  15. Ferraris L. , Aires J. , Waligora-Dupriet A. J. , Butel M. J. . ( 2010; ). New selective medium for selection of bifidobacteria from human feces. . Anaerobe 16:, 469–471. [CrossRef] [PubMed]
    [Google Scholar]
  16. Fisher D. J. , Miyamoto K. , Harrison B. , Akimoto S. , Sarker M. R. , McClane B. A. . ( 2005; ). Association of β2 toxin production with Clostridium perfringens type A human gastrointestinal disease isolates carrying a plasmid enterotoxin gene. . Mol Microbiol 56:, 747–762. [CrossRef] [PubMed]
    [Google Scholar]
  17. Garrity G. M. , Bell J. A. , Lilburn T. G. . ( 2004; ). Taxonomic outline of the procaryotes. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., release 5, pp. 1–39. New York:: Springer;.
    [Google Scholar]
  18. Greco G. , Madio A. , Martella V. , Campolo M. , Corrente M. , Buonavoglia D. , Buonavoglia C. . ( 2005; ). Enterotoxemia associated with β2 toxin-producing Clostridium perfringens type A in two Asiatic black bears (Selenarctos thibetanus). . J Vet Diagn Invest 17:, 186–189. [CrossRef] [PubMed]
    [Google Scholar]
  19. Guigoz Y. , Doré J. , Schiffrin E. J. . ( 2008; ). The inflammatory status of old age can be nurtured from the intestinal environment. . Curr Opin Clin Nutr Metab Care 11:, 13–20. [CrossRef] [PubMed]
    [Google Scholar]
  20. Hopkins M. J. , Macfarlane G. T. . ( 2002; ). Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. . J Med Microbiol 51:, 448–454.[PubMed]
    [Google Scholar]
  21. Hopkins M. J. , Sharp R. , Macfarlane G. T. . ( 2002; ). Variation in human intestinal microbiota with age. . Dig Liver Dis 34: (Suppl. 2), S12–S18. [CrossRef] [PubMed]
    [Google Scholar]
  22. Lebrun M. , Filée P. , Mousset B. , Desmecht D. , Galleni M. , Mainil J. G. , Linden A. . ( 2007; ). The expression of Clostridium perfringens consensus β2 toxin is associated with bovine enterotoxaemia syndrome. . Vet Microbiol 120:, 151–157. [CrossRef] [PubMed]
    [Google Scholar]
  23. Lukinmaa S. , Takkunen E. , Siitonen A. . ( 2002; ). Molecular epidemiology of Clostridium perfringens related to food-borne outbreaks of disease in Finland from 1984 to 1999. . Appl Environ Microbiol 68:, 3744–3749. [CrossRef] [PubMed]
    [Google Scholar]
  24. Lund B. M. , Baird-Parker T. C. , Gould G. W. . ( 2000; ). The Microbiological Safety and Quality of Food. Gauthersburg, MD:: Aspen Publishers;.
    [Google Scholar]
  25. MacFaddin J. F. . ( 1976; ). Biochemical Tests for Identification of Medical Bacteria. Baltimore, MD:: Williams & Wilkins;.
    [Google Scholar]
  26. Mikkelsen L. L. , Bendixen C. , Jakobsen M. , Jensen B. B. . ( 2003; ). Enumeration of bifidobacteria in gastrointestinal samples from piglets. . Appl Environ Microbiol 69:, 654–658. [CrossRef] [PubMed]
    [Google Scholar]
  27. Mitsuoka T. . ( 1992; ). Intestinal flora and aging. . Nutr Rev 50:, 438–446. [CrossRef] [PubMed]
    [Google Scholar]
  28. Nebra Y. , Blanch A. R. . ( 1999; ). A new selective medium for Bifidobacterium spp. . Appl Environ Microbiol 65:, 5173–5176.[PubMed]
    [Google Scholar]
  29. O’Sullivan Ó. , Coakley M. , Lakshminarayanan B. , Claesson M. J. , Stanton C. , O’Toole P. W. , Ross R. P. . ELDERMET Consortium ( 2011; ). Correlation of rRNA gene amplicon pyrosequencing and bacterial culture for microbial compositional analysis of faecal samples from elderly Irish subjects. . J Appl Microbiol 111:, 467–473. [CrossRef] [PubMed]
    [Google Scholar]
  30. O’Sullivan O. , Coakley M. , Lakshminarayanan B. , Conde S. , Claesson M. J. , Cusack S. , Fitzgerald A. P. , O’Toole P. W. , Stanton C. , Ross R. P. . on behalf of the ELDERMET Consortium ( 2013; ). Alterations in intestinal microbiota of elderly Irish subjects post-antibiotic therapy. . J Antimicrob Chemother 68:, 214–221. [CrossRef] [PubMed]
    [Google Scholar]
  31. Petit L. , Gibert M. , Popoff M. R. . ( 1999; ). Clostridium perfringens: toxinotype and genotype. . Trends Microbiol 7:, 104–110. [CrossRef] [PubMed]
    [Google Scholar]
  32. Pruteanu M. , Hyland N. P. , Clarke D. J. , Kiely B. , Shanahan F. . ( 2011; ). Degradation of the extracellular matrix components by bacterial-derived metalloproteases: implications for inflammatory bowel diseases. . Inflamm Bowel Dis 17:, 1189–1200. [CrossRef] [PubMed]
    [Google Scholar]
  33. Rada V. , Petr J. . ( 2000; ). A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. . J Microbiol Methods 43:, 127–132. [CrossRef] [PubMed]
    [Google Scholar]
  34. Rosberg-Cody E. , Ross R. P. , Hussey S. , Ryan C. A. , Murphy B. P. , Fitzgerald G. F. , Devery R. , Stanton C. . ( 2004; ). Mining the microbiota of the neonatal gastrointestinal tract for conjugated linoleic acid-producing bifidobacteria. . Appl Environ Microbiol 70:, 4635–4641. [CrossRef] [PubMed]
    [Google Scholar]
  35. Rupnik M. , Wilcox M. H. , Gerding D. N. . ( 2009; ). Clostridium difficile infection: new developments in epidemiology and pathogenesis. . Nat Rev Microbiol 7:, 526–536. [CrossRef] [PubMed]
    [Google Scholar]
  36. Shimizu T. , Ohtani K. , Hirakawa H. , Ohshima K. , Yamashita A. , Shiba T. , Ogasawara N. , Hattori M. , Kuhara S. , Hayashi H. . ( 2002; ). Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. . Proc Natl Acad Sci U S A 99:, 996–1001. [CrossRef] [PubMed]
    [Google Scholar]
  37. Simpson P. J. , Stanton C. , Fitzgerald G. F. , Ross R. P. . ( 2003; ). Genomic diversity and relatedness of bifidobacteria isolated from a porcine cecum. . J Bacteriol 185:, 2571–2581. [CrossRef] [PubMed]
    [Google Scholar]
  38. Simpson P. J. , Fitzgerald G. F. , Stanton C. , Ross R. P. . ( 2004; ). The evaluation of a mupirocin-based selective medium for the enumeration of bifidobacteria from probiotic animal feed. . J Microbiol Methods 57:, 9–16. [CrossRef] [PubMed]
    [Google Scholar]
  39. Smedley J. G. III , McClane B. A. . ( 2004; ). Fine mapping of the N-terminal cytotoxicity region of Clostridium perfringens enterotoxin by site-directed mutagenesis. . Infect Immun 72:, 6914–6923. [CrossRef] [PubMed]
    [Google Scholar]
  40. Smith J. L. . ( 1998; ). Foodborne illness in the elderly. . J Food Prot 61:, 1229–1239.[PubMed]
    [Google Scholar]
  41. Sparks S. G. , Carman R. J. , Sarker M. R. , McClane B. A. . ( 2001; ). Genotyping of enterotoxigenic Clostridium perfringens fecal isolates associated with antibiotic-associated diarrhea and food poisoning in North America. . J Clin Microbiol 39:, 883–888. [CrossRef] [PubMed]
    [Google Scholar]
  42. Stringer M. F. , Watson G. N. , Gilbert R. J. , Wallace J. G. , Hassall J. E. , Tanner E. I. , Webber P. P. . ( 1985; ). Faecal carriage of Clostridium perfringens . . J Hyg (Lond) 95:, 277–288. [CrossRef] [PubMed]
    [Google Scholar]
  43. Thitaram S. N. , Siragusa G. R. , Hinton A. Jr . ( 2005; ). Bifidobacterium-selective isolation and enumeration from chicken caeca by a modified oligosaccharide antibiotic-selective agar medium. . Lett Appl Microbiol 41:, 355–360. [CrossRef] [PubMed]
    [Google Scholar]
  44. Turroni F. , Ribbera A. , Foroni E. , van Sinderen D. , Ventura M. . ( 2008; ). Human gut microbiota and bifidobacteria: from composition to functionality. . Antonie van Leeuwenhoek 94:, 35–50. [CrossRef] [PubMed]
    [Google Scholar]
  45. Wall R. , Hussey S. G. , Ryan C. A. , O’Neill M. , Fitzgerald G. , Stanton C. , Ross R. P. . ( 2008; ). Presence of two Lactobacillus and Bifidobacterium probiotic strains in the neonatal ileum. . ISME J 2:, 83–91. [CrossRef] [PubMed]
    [Google Scholar]
  46. Wang Q. , Garrity G. M. , Tiedje J. M. , Cole J. R. . ( 2007; ). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. . Appl Environ Microbiol 73:, 5261–5267. [CrossRef] [PubMed]
    [Google Scholar]
  47. Waters M. , Savoie A. , Garmory H. S. , Bueschel D. , Popoff M. R. , Songer J. G. , Titball R. W. , McClane B. A. , Sarker M. R. . ( 2003; ). Genotyping and phenotyping of β2-toxigenic Clostridium perfringens fecal isolates associated with gastrointestinal diseases in piglets. . J Clin Microbiol 41:, 3584–3591. [CrossRef] [PubMed]
    [Google Scholar]
  48. Woodmansey E. J. . ( 2007; ). Intestinal bacteria and ageing. . J Appl Microbiol 102:, 1178–1186. [CrossRef] [PubMed]
    [Google Scholar]
  49. Wu J. , Zhang W. , Xie B. , Wu M. , Tong X. , Kalpoe J. , Zhang D. . ( 2009; ). Detection and toxin typing of Clostridium perfringens in formalin-fixed, paraffin-embedded tissue samples by PCR. . J Clin Microbiol 47:, 807–810. [CrossRef] [PubMed]
    [Google Scholar]
  50. Yamagishi T. , Serikawa T. , Morita R. , Nakamura S. , Nishida S. . ( 1976; ). Persistent high numbers of Clostridium perfringens in the intestines of Japanese aged adults. . Jpn J Microbiol 20:, 397–403.[PubMed] [CrossRef]
    [Google Scholar]
  51. Zoetendal E. G. , Akkermans A. D. L. , De Vos W. M. . ( 1998; ). Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. . Appl Environ Microbiol 64:, 3854–3859.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.052258-0
Loading
/content/journal/jmm/10.1099/jmm.0.052258-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error