1887

Abstract

The composition of in the neonatal gut has rarely been studied in developing countries. To gain insight into the composition of in the neonatal gut and to assess factors that could influence colonization by , analysis of the phylogenetic groups and virulence determinants of isolated from the guts of neonates in a tertiary care hospital was carried out. The distribution of the phylogroups of 124 isolates recovered showed that phylogroups A (23 %) and B1 (49 %) accounted for 72 % of the isolates. Isolates of the phylogenetic group B2 were rare (8 %). Virulence factors were also rare with the exception of aerobactin (), which was detected in 45 % of the isolates and was significantly associated with phylogroup B1. Multinomial logistic regression established that colonization with phylogroup B1 was associated with a stay in the neonatal intensive care unit; phylogroup A was associated with a stay on the ward; and phylogroups B2 and D were associated with neonates delivered vaginally. Evaluation of the effect of different phylogroups, with and without identified virulence determinants, on the gut of neonatal mice showed histopathological changes in the mucosa. The severity of the changes could be correlated with the presence of virulence determinants, irrespective of the phylogroup.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.052225-0
2013-11-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/11/1680.html?itemId=/content/journal/jmm/10.1099/jmm.0.052225-0&mimeType=html&fmt=ahah

References

  1. Bailey J. K., Pinyon J. L., Anantham S., Hall R. M.. ( 2010;). Distribution of human commensal Escherichia coli phylogenetic groups. . J Clin Microbiol 48:, 3455–3456. [CrossRef][PubMed]
    [Google Scholar]
  2. Biasucci G., Rubini M., Riboni S., Morelli L., Bessi E., Retetangos C.. ( 2010;). Mode of delivery affects the bacterial community in the newborn gut. . Early Hum Dev 86: (Suppl 1), 13–15. [CrossRef][PubMed]
    [Google Scholar]
  3. Bingen E., Picard B., Brahimi N., Mathy S., Desjardins P., Elion J., Denamur E.. ( 1998;). Phylogenetic analysis of Escherichia coli strains causing neonatal meningitis suggests horizontal gene transfer from a predominant pool of highly virulent B2 group strains. . J Infect Dis 177:, 642–650. [CrossRef][PubMed]
    [Google Scholar]
  4. Carbonetti N. H., Boonchai S., Parry S. H., Väisänen-Rhen V., Korhonen T. K., Williams P. H.. ( 1986;). Aerobactin-mediated iron uptake by Escherichia coli isolates from human extraintestinal infections. . Infect Immun 51:, 966–968.[PubMed]
    [Google Scholar]
  5. Chapman T. A., Wu X. Y., Barchia I., Bettelheim K. A., Driesen S., Trott D., Wilson M., Chin J. J. C.. ( 2006;). Comparison of virulence gene profiles of Escherichia coli strains isolated from healthy and diarrheic swine. . Appl Environ Microbiol 72:, 4782–4795. [CrossRef][PubMed]
    [Google Scholar]
  6. Clermont O., Bonacorsi S., Bingen E.. ( 2000;). Rapid and simple determination of the Escherichia coli phylogenetic group. . Appl Environ Microbiol 66:, 4555–4558. [CrossRef][PubMed]
    [Google Scholar]
  7. CLSI ( 2008;). Performance Standards for Antimicrobial Susceptibility Testing; 18th Information Supplement M100-S18. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  8. Das P., Singh A. K., Pal T., Dasgupta S., Ramamurthy T., Basu S.. ( 2011;). Colonization of the gut with Gram-negative bacilli, its association with neonatal sepsis and its clinical relevance in a developing country. . J Med Microbiol 60:, 1651–1660. [CrossRef][PubMed]
    [Google Scholar]
  9. Duriez P., Clermont O., Bonacorsi S., Bingen E., Chaventré A., Elion J., Picard B., Denamur E.. ( 2001;). Commensal Escherichia coli isolates are phylogenetically distributed among geographically distinct human populations. . Microbiology 147:, 1671–1676.[PubMed]
    [Google Scholar]
  10. Gordon D. M., Cowling A.. ( 2003;). The distribution and genetic structure of Escherichia coli in Australian vertebrates: host and geographic effects. . Microbiology 149:, 3575–3586. [CrossRef][PubMed]
    [Google Scholar]
  11. Gordon D. M., Stern S. E., Collignon P. J.. ( 2005;). Influence of the age and sex of human hosts on the distribution of Escherichia coli ECOR groups and virulence traits. . Microbiology 151:, 15–23. [CrossRef][PubMed]
    [Google Scholar]
  12. Grönlund M. M., Lehtonen O. P., Eerola E., Kero P.. ( 1999;). Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. . J Pediatr Gastroenterol Nutr 28:, 19–25. [CrossRef][PubMed]
    [Google Scholar]
  13. Hosmer D. W., Lemeshow S.. ( 2000;). Applied Logistic Regression. New York:: John Wiley & Sons;. [CrossRef]
    [Google Scholar]
  14. Huang S. H., Wan Z. S., Chen Y. H., Jong A. Y., Kim K. S.. ( 2001;). Further characterization of Escherichia coli brain microvascular endothelial cell invasion gene ibeA by deletion, complementation, and protein expression. . J Infect Dis 183:, 1071–1078. [CrossRef][PubMed]
    [Google Scholar]
  15. Johnson J. R., Stell A. L.. ( 2000;). Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. . J Infect Dis 181:, 261–272. [CrossRef][PubMed]
    [Google Scholar]
  16. Johnson J. R., Delavari P., Kuskowski M., Stell A. L.. ( 2001;). Phylogenetic distribution of extraintestinal virulence-associated traits in Escherichia coli.. J Infect Dis 183:, 78–88. [CrossRef][PubMed]
    [Google Scholar]
  17. Kaper J. B., Nataro J. P., Mobley H. L.. ( 2004;). Pathogenic Escherichia coli.. Nat Rev Microbiol 2:, 123–140. [CrossRef][PubMed]
    [Google Scholar]
  18. Kuhnert P., Hacker J., Mühldorfer I., Burnens A. P., Nicolet J., Frey J.. ( 1997;). Detection system for Escherichia coli-specific virulence genes: absence of virulence determinants in B and C strains. . Appl Environ Microbiol 63:, 703–709.[PubMed]
    [Google Scholar]
  19. Lidin-Janson G., Kaijser B., Lincoln K., Olling S., Wedel H.. ( 1978;). The homogeneity of the faecal coliform flora of normal school-girls, characterized by serological and biochemical properties. . Med Microbiol Immunol 164:, 247–253. [CrossRef][PubMed]
    [Google Scholar]
  20. Nowrouzian F. L., Wold A. E., Adlerberth I.. ( 2005;). Escherichia coli strains belonging to phylogenetic group B2 have superior capacity to persist in the intestinal microflora of infants. . J Infect Dis 191:, 1078–1083. [CrossRef][PubMed]
    [Google Scholar]
  21. Nowrouzian F. L., Ostblom A. E., Wold A. E., Adlerberth I.. ( 2009;). Phylogenetic group B2 Escherichia coli strains from the bowel microbiota of Pakistani infants carry few virulence genes and lack the capacity for long-term persistence. . Clin Microbiol Infect 15:, 466–472. [CrossRef][PubMed]
    [Google Scholar]
  22. O’Boyle C. J., MacFie J., Mitchell C. J., Johnstone D., Sagar P. M., Sedman P. C.. ( 1998;). Microbiology of bacterial translocation in humans. . Gut 42:, 29–35. [CrossRef][PubMed]
    [Google Scholar]
  23. Penders J., Thijs C., Vink C., Stelma F. F., Snijders B., Kummeling I., van den Brandt P. A., Stobberingh E. E.. ( 2006;). Factors influencing the composition of the intestinal microbiota in early infancy. . Pediatrics 118:, 511–521. [CrossRef][PubMed]
    [Google Scholar]
  24. Picard B., Garcia J. S., Gouriou S., Duriez P., Brahimi N., Bingen E., Elion J., Denamur E.. ( 1999;). The link between phylogeny and virulence in Escherichia coli extraintestinal infection. . Infect Immun 67:, 546–553.[PubMed]
    [Google Scholar]
  25. Rasko D. A., Rosovitz M. J., Myers G. S., Mongodin E. F., Fricke W. F., Gajer P., Crabtree J., Sebaihia M., Thomson N. R., Chaudhuri R.. & other authors ( 2008;). The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. . J Bacteriol 190:, 6881–6893. [CrossRef][PubMed]
    [Google Scholar]
  26. Tenaillon O., Skurnik D., Picard B., Denamur E.. ( 2010;). The population genetics of commensal Escherichia coli.. Nat Rev Microbiol 8:, 207–217. [CrossRef][PubMed]
    [Google Scholar]
  27. Watt S., Lanotte P., Mereghetti L., Moulin-Schouleur M., Picard B., Quentin R.. ( 2003;). Escherichia coli strains from pregnant women and neonates: intraspecies genetic distribution and prevalence of virulence factors. . J Clin Microbiol 41:, 1929–1935. [CrossRef][PubMed]
    [Google Scholar]
  28. Yamamoto S., Terai A., Yuri K., Kurazono H., Takeda Y., Yoshida O.. ( 1995;). Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. . FEMS Immunol Med Microbiol 12:, 85–90. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.052225-0
Loading
/content/journal/jmm/10.1099/jmm.0.052225-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error