1887

Abstract

The ability to acquire iron is crucial for bacteria during an infection. The capacity of 35 strains of , isolated from clinical specimens, to use various strategies to obtain iron was analysed. The isolates employed several iron-uptake mechanisms, including production of enterobactin (86 %) and aerobactin (71 %). The majority of the isolates also excreted yersiniabactin, which is encoded by the high-pathogenicity island (HPI). However, PCR analysis of the HPI revealed diversity in its genetic organization. Use of human transferrin (91 %), lactoferrin (94 %), haemoglobin (80 %) and haemoglobin–haptoglobin complex (63 %) as the sole source of iron was common among isolates. Multiple iron-uptake systems may be of benefit to bacteria during an infection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05219-0
2003-08-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/8/JM520806.html?itemId=/content/journal/jmm/10.1099/jmm.0.05219-0&mimeType=html&fmt=ahah

References

  1. Aumont, P., Enard, C., Expert, D., Pieddeloup, C., Tancrede, C. & Andremont, A. ( 1989;). Production of haemolysin, aerobactin and enterobactin by strains of Escherichia coli causing bacteraemia in cancer patients, and their resistance to human serum. Res Microbiol 140, 21–26.[CrossRef]
    [Google Scholar]
  2. Bach, S., de Almeida, A. & Carniel, E. ( 2000;). The Yersinia high-pathogenicity island is present in different members of the family Enterobacteriaceae. FEMS Microbiol Lett 183, 289–294.[CrossRef]
    [Google Scholar]
  3. Beecher, D. J. & Wong, A. C. ( 1994;). Identification of hemolysin BL-producing Bacillus cereus isolates by a discontinuous hemolytic pattern in blood agar. Appl Environ Microbiol 60, 1646–1651.
    [Google Scholar]
  4. Buchrieser, C., Brosch, R., Bach, S., Guiyoule, A. & Carniel, E. ( 1998;). The high-pathogenicity island of Yersinia pseudotuberculosis can be inserted into any of the three chromosomal asn tRNA genes. Mol Microbiol 30, 965–978.[CrossRef]
    [Google Scholar]
  5. Carniel, E. ( 2001;). The Yersinia high-pathogenicity island: an iron-uptake island. Microbes Infect 3, 561–569.[CrossRef]
    [Google Scholar]
  6. Clermont, O., Bonacorsi, S. & Bingen, E. ( 2001;). The Yersinia high-pathogenicity island is highly predominant in virulence-associated phylogenetic groups of Escherichia coli. FEMS Microbiol Lett 196, 153–157.[CrossRef]
    [Google Scholar]
  7. Dall'Agnol, M. & Martinez, M. B. ( 1999;). Uptake of iron from different compounds by enteroinvasive Escherichia coli. Rev Microbiol 30, 149–152.
    [Google Scholar]
  8. Eaton, J. W., Brandt, P., Mahoney, J. R. & Lee, J. T., Jr ( 1982;). Haptoglobin: a natural bacteriostat. Science 215, 691–693.[CrossRef]
    [Google Scholar]
  9. Girardeau, J. P., Lalioui, L., Said, A. M. O., De Champs, C. & Le Bouguénec, C. ( 2003;). Extended virulence genotype of pathogenic Escherichia coli isolates carrying the afa-8 operon: evidence of similarities between isolates from humans and animals with extraintestinal infections. J Clin Microbiol 41, 218–226.[CrossRef]
    [Google Scholar]
  10. Gophna, U., Oelschlaeger, T. A., Hacker, J. & Ron, E. Z. ( 2001;). Yersinia HPI in septicemic Escherichia coli strains isolated from diverse hosts. FEMS Microbiol Lett 196, 57–60.[CrossRef]
    [Google Scholar]
  11. Griffiths, E., Chart, H. & Stevenson, P. ( 1988;). High-affinity iron uptake systems and bacterial virulence. In Virulence Mechanisms of Bacterial Pathogens, pp. 121–137. Edited by J. A. Roth. Washington, DC: American Society for Microbiology.
  12. Haag, H., Hantke, K., Drechsel, H., Stojiljkovic, I., Jung, G. & Zahner, H. ( 1993;). Purification of yersiniabactin: a siderophore and possible virulence factor of Yersinia enterocolitica. J Gen Microbiol 139, 2159–2165.[CrossRef]
    [Google Scholar]
  13. Hacker, J., Blum-Oehler, G., Mühldorfer, I. & Tschäpe, H. ( 1997;). Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 23, 1089–1097.[CrossRef]
    [Google Scholar]
  14. Helms, S. D., Oliver, J. D. & Travis, J. C. ( 1984;). Role of heme compounds and haptoglobin in Vibrio vulnificus pathogenicity. Infect Immun 45, 345–349.
    [Google Scholar]
  15. Hensel, M., Shea, J. E., Bäumler, A. J., Gleeson, C., Blattner, F. & Holden, D. W. ( 1997;). Analysis of the boundaries of Salmonella pathogenicity island 2 and the corresponding chromosomal region of Escherichia coli K-12. J Bacteriol 179, 1105–1111.
    [Google Scholar]
  16. Johnson, J. R., Moseley, S. L., Roberts, P. L. & Stamm, W. E. ( 1988;). Aerobactin and other virulence factor genes among strains of Escherichia coli causing urosepsis: association with patient charateristics. Infect Immun 56, 405–412.
    [Google Scholar]
  17. Karch, H., Schubert, S., Zhang, D., Zhang, W., Schmidt, H., Ölschläger, T. & Hacker, J. ( 1999;). A genomic island, termed high-pathogenicity island, is present in certain non-O157 Shiga toxin-producing Escherichia coli clonal lineages. Infect Immun 67, 5994–6001.
    [Google Scholar]
  18. Law, D., Wilkie, K. M., Freeman, R. & Gould, F. K. ( 1992;). The iron uptake mechanisms of enteropathogenic Escherichia coli: the use of haem and haemoglobin during growth in an iron-limited environment. J Med Microbiol 37, 15–21.[CrossRef]
    [Google Scholar]
  19. Martinez, J. L., Cercenado, E., Baquero, F., Perez-Diaz, J. C. & Delgado-Iribarren, A. ( 1987;). Incidence of aerobactin production in Gram-negative hospital isolates. FEMS Microbiol Lett 43, 351–353.[CrossRef]
    [Google Scholar]
  20. Martinez, J. L., Delgado-Iribarren, A. & Baquero, F. ( 1990;). Mechanisms of iron acquisition and bacterial virulence. FEMS Microbiol Rev 6, 45–56.
    [Google Scholar]
  21. Massad, G., Arceneaux, J. E. L. & Byers, B. R. ( 1991;). Acquisition of iron from host sources by mesophilic Aeromonas species. J Gen Microbiol 137, 237–241.[CrossRef]
    [Google Scholar]
  22. Montgomerie, J. Z., Bindereif, A., Neilands, J. B., Kalmanson, G. M. & Guze, L. B. ( 1984;). Association of hydroxamate siderophore (aerobactin) with Escherichia coli isolated from patients with bacteremia. Infect Immun 46, 835–838.
    [Google Scholar]
  23. Moore, D. G. & Earhart, C. F. ( 1981;). Specific inhibition of Escherichia coli ferrienterochelin uptake by a normal human serum immunoglobin. Infect Immun 31, 631–635.
    [Google Scholar]
  24. Otto, B. R., van Dooren, S. J. M., Nuijens, J. H., Luirink, J. & Oudega, B. ( 1998;). Characterization of a hemoglobin protease secreted by the pathogenic Escherichia coli strain EB1. J Exp Med 188, 1091–1103.[CrossRef]
    [Google Scholar]
  25. Payne, S. M. ( 1988;). Iron and virulence in the family Enterobacteriaceae. Crit Rev Microbiol 16, 81–111.[CrossRef]
    [Google Scholar]
  26. Pelludat, C., Rakin, A., Jacobi, C. A., Schubert, S. & Heesemann, J. ( 1998;). The yersiniabactin biosynthetic gene cluster of Yersinia enterocolitica: organization and siderophore-dependent regulation. J Bacteriol 180, 538–546.
    [Google Scholar]
  27. Perry, R. D., Balbo, P. B., Jones, H. A., Fetherston, J. D. & DeMoll, E. ( 1999;). Yersiniabactin from Yersinia pestis: biochemical characterization of the siderophore and its role in iron transport and regulation. Microbiology 145, 1181–1190.[CrossRef]
    [Google Scholar]
  28. Ratledge, C. & Dover, L. G. ( 2000;). Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54, 881–941.[CrossRef]
    [Google Scholar]
  29. Reissbrodt, R. & Rabsch, W. ( 1988;). Further differentiation of Enterobacteriaceae by means of siderophore-pattern analysis. Zentbl Bakteriol Mikrobiol Hyg A 268, 306–317.
    [Google Scholar]
  30. Schubert, S., Rakin, A., Karch, H., Carniel, E. & Heeseman, J. ( 1998;). Prevalence of the ‘‘high-pathogenicity island’’ of Yersinia species among Escherichia coli strains that are pathogenic to humans. Infect Immun 66, 480–485.
    [Google Scholar]
  31. Schubert, S., Cuenca, S., Fischer, D. & Heesemann, J. ( 2000;). High-pathogenicity island of Yersinia pestis in Enterobacteriaceae isolated from blood cultures and urine samples: prevalence and functional expression. J Infect Dis 182, 1268–1271.[CrossRef]
    [Google Scholar]
  32. Schubert, S., Picard, B., Gouriou, S., Heesemann, J. & Denamur, E. ( 2002;). Yersinia high-pathogenicity island contributes to virulence in Escherichia coli causing extraintestinal infections. Infect Immun 70, 5335–5337.[CrossRef]
    [Google Scholar]
  33. Schwyn, B. & Neilands, J. B. ( 1987;). Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160, 47–56.[CrossRef]
    [Google Scholar]
  34. Staggs, T. M. & Perry, R. D. ( 1991;). Identification and cloning of a fur regulatory gene in Yersinia pestis. J Bacteriol 173, 417–425.
    [Google Scholar]
  35. Torres, A. G., Redford, P., Welch, R. A. & Payne, S. M. ( 2001;). TonB-dependent systems of uropathogenic Escherichia coli: aerobactin and heme transport and TonB are required for virulence in the mouse. Infect Immun 69, 6179–6185.[CrossRef]
    [Google Scholar]
  36. Valvano, M. A. & Crosa, J. H. ( 1984;). Aerobactin iron transport genes commonly encoded by certain ColV plasmids occur in the chromosome of a human invasive strain of Escherichia coli K1. Infect Immun 46, 159–167.
    [Google Scholar]
  37. Weinberg, E. D. ( 1978;). Iron and infection. Microbiol Rev 42, 45–66.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05219-0
Loading
/content/journal/jmm/10.1099/jmm.0.05219-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error