1887

Abstract

The ability of phage-typing and I chromosomal RFLPs to conclude appropriate strain relatedness between a collection of 12 well-characterized -selected vancomycin-intermediate (VISA) strains and their seven vancomycin-susceptible parent strains is reported. Generally, no I RFLP alterations were observed in VISA strains when they were compared with their respective parent strains, and clonal relationships between isogenic strains were clearly evident. Unlike the I RFLP results, parent strains and VISA derivatives generally did not share similar phage-typing profiles. Depending on the phage set investigated, some VISA strains even became untypable by this method. Loss of phage infectivity is probably due to cell wall (phage receptor) alterations that are expressed by the VISA strains investigated. Collectively, these findings indicate that inappropriate relationships between VISA and vancomycin-susceptible parents might be drawn if only phage-typing and antibiotic susceptibility are utilized to determine epidemiological relationships.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05210-0
2003-08-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/8/JM520817.html?itemId=/content/journal/jmm/10.1099/jmm.0.05210-0&mimeType=html&fmt=ahah

References

  1. Andrasevic, A. T., Power, E. G., Anthony, R. M., Kalenic, S. & French, G. L. ( 1999;). Failure of bacteriophage typing to detect an inter-hospital outbreak of methicillin-resistant Staphylococcus aureus (MRSA) in Zagreb subsequently identified by random amplification of polymorphic DNA (RAPD) and pulsed-field gel electrophoresis (PFGE). Clin Microbiol Infect 5, 634–642.[CrossRef]
    [Google Scholar]
  2. Avison, M. B., Bennett, P. M., Howe, R. A. & Walsh, T. R. ( 2002;). Preliminary analysis of the genetic basis for vancomycin resistance in Staphylococcus aureus strain Mu50. J Antimicrob Chemother 49, 255–260.[CrossRef]
    [Google Scholar]
  3. Beard-Pegler, M. A. & Vickery, A. M. ( 1985;). Lysogenicity of methicillin-resistant strains of Staphylococcus aureus. J Med Microbiol 20, 147–155.[CrossRef]
    [Google Scholar]
  4. Blair, J. E. & Williams, R. E. O. ( 1961;). Phage typing of staphylococci. Bull W H O 24, 771–784.
    [Google Scholar]
  5. Chatterjee, A. N. ( 1969;). Use of bacteriophage-resistant mutants to study the nature of bacteriophage receptor site of Staphylococcus aureus. J Bacteriol 98, 519–527.
    [Google Scholar]
  6. Chesneau, O., Morvan, A. & El Solh, N. ( 2000;). Retrospective screening for heterogeneous vancomycin resistance in diverse Staphylococcus aureus clones disseminated in French hospitals. J Antimicrob Chemother 45, 887–890.[CrossRef]
    [Google Scholar]
  7. Dai, G., Su, P., Allison, G. E., Geller, B. L., Zhu, P., Kim, W. S. & Dunn, N. W. ( 2001;). Molecular characterization of a new abortive infection system (AbiU) from Lactococcus lactis LL51–1. Appl Environ Microbiol 67, 5225–5232.[CrossRef]
    [Google Scholar]
  8. Daum, R. S., Gupta, S., Sabbagh, R. & Milewski, W. M. ( 1992;). Characterization of Staphylococcus aureus isolates with decreased susceptibility to vancomycin and teicoplanin: isolation and purification of a constitutively produced protein associated with decreased susceptibility. J Infect Dis 166, 1066–1072.[CrossRef]
    [Google Scholar]
  9. Hiramatsu, K., Hanaki, H., Ino, T., Yabuta, K., Oguri, T. & Tenover, F. C. ( 1997a;). Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 40, 135–136.[CrossRef]
    [Google Scholar]
  10. Hiramatsu, K., Aritaka, N., Hanaki, H., Kawasaki, S., Hosoda, Y., Hori, S., Fukuchi, Y. & Kobayashi, I. ( 1997b;). Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 350, 1670–1673.[CrossRef]
    [Google Scholar]
  11. Jorgensen, M., Givney, R., Pegler, M., Vickery, A. & Funnell, G. ( 1996;). Typing multidrug-resistant Staphylococcus aureus: conflicting epidemiological data produced by genotypic and phenotypic methods clarified by phylogenetic analysis. J Clin Microbiol 34, 398–403.
    [Google Scholar]
  12. Kim, M. N., Hwang, S. H., Pyo, Y. J., Mun, H. M. & Pai, C. H. ( 2002;). Clonal spread of Staphylococcus aureus heterogeneously resistant to vancomycin in a university hospital in Korea. J Clin Microbiol 40, 1376–1380.[CrossRef]
    [Google Scholar]
  13. Kong, J. & Josephsen, J. ( 2002;). The ability of the plasmid-encoded restriction and modification system LlaBII to protect Lactococcus lactis against bacteriophages. Lett Appl Microbiol 34, 249–253.[CrossRef]
    [Google Scholar]
  14. McGrath, S., Fitzgerald, G. F. & van Sinderen, D. ( 2002;). Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Mol Microbiol 43, 509–520.[CrossRef]
    [Google Scholar]
  15. Miller, D., Urdaneta, V. & Weltman, A. ( 2002;). Public Health Dispatch: vancomycin-resistant Staphylococcus aureus – Pennsylvania, 2002. MMWR 51, 902. 902.
    [Google Scholar]
  16. O'Brien, F. G., Pearman, J. W., Gracey, M., Riley, T. V. & Grubb, W. B. ( 1999;). Community strain of methicillin-resistant Staphylococcus aureus involved in a hospital outbreak. J Clin Microbiol 37, 2858–2862.
    [Google Scholar]
  17. O'Neill, G. L., Murchan, S., Gil-Setas, A. & Aucken, H. M. ( 2001;). Identification and characterization of phage variants of a strain of epidemic methicillin-resistant Staphylococcus aureus (EMRSA-15). J Clin Microbiol 39, 1540–1548.[CrossRef]
    [Google Scholar]
  18. Pfeltz, R. F., Singh, V. K., Schmidt, J. L., Batten, M. A., Baranyk, C. S., Nadakavukaren, M. J., Jayaswal, R. K. & Wilkinson, B. J. ( 2000;). Characterization of passage-selected vancomycin-resistant Staphylococcus aureus strains of diverse parental backgrounds. Antimicrob Agents Chemother 44, 294–303.[CrossRef]
    [Google Scholar]
  19. Riepert, A., Ehlert, K., Kast, T. & Bierbaum, G. ( 2003;). Morphological and genetic differences in two isogenic Staphylococcus aureus strains with decreased susceptibilities to vancomycin. Antimicrob Agents Chemother 47, 568–576.[CrossRef]
    [Google Scholar]
  20. Rotun, S. S., McMath, V., Schoonmaker, D. J., Maupin, P. S., Tenover, F. C., Hill, B. C. & Ackman, D. M. ( 1999;). Staphylococcus aureus with reduced susceptibility to vancomycin isolated from a patient with fatal bacteremia. Emerg Infect Dis 5, 147–149.[CrossRef]
    [Google Scholar]
  21. Sakoulas, G., Eliopoulos, G. M., Moellering, R. C., Jr, Wennersten, C., Venkataraman, L., Novick, R. P. & Gold, H. S. ( 2002;). Accessory gene regulator (agr) locus of geographically diverse Staphylococcus aureus isolates with reduced susceptibility to vancomycin. Antimicrob Agents Chemother 46, 1492–1502.[CrossRef]
    [Google Scholar]
  22. Schaaff, F., Reipert, A. & Bierbaum, G. ( 2002;). An elevated mutation frequency favors development of vancomycin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 46, 3540–3548.[CrossRef]
    [Google Scholar]
  23. Sieradski, K., Roberts, R. B., Haber, S. W. & Tomasz, A. ( 1999a;). The development of vancomycin resistance in a patient with methicillin-resistant Staphylococcus aureus infection. N Engl J Med 340, 517–523.[CrossRef]
    [Google Scholar]
  24. Sieradzki, K., Wu, S. W. & Tomasz, A. ( 1999b;). Inactivation of the methicillin resistance gene mecA in vancomycin-resistant Staphylococcus aureus. Microb Drug Resist 5, 253–257.[CrossRef]
    [Google Scholar]
  25. Sievert, D. M., Boulton, M. L., Stoltman, G. & 11 other authors ( 2002;). Staphylococcus aureus resistant to vancomycin – United States, 2002. MMWR 51, 565–567.
    [Google Scholar]
  26. Simor, A. E., Ofner-Agostini, M., Bryce, E., McGeer, A., Paton, S. & Mulvey, M. R. ( 2002;). Laboratory characterization of methicillin-resistant Staphylococcus aureus in Canadian hospitals: results of 5 years of National Surveillance. J Infect Dis 186, 652–660.[CrossRef]
    [Google Scholar]
  27. Smeltzer, M. S., Hart, M. E. & Iandolo, J. J. ( 1994;). The effect of lysogeny on the genomic organization of Staphylococcus aureus. Gene 138, 51–57.[CrossRef]
    [Google Scholar]
  28. Smith, T. L., Pearson, M. L., Wilcox, K. R. & 8 other authors ( 1999;). Emergence of vancomycin resistance in Staphylococcus aureus.Glycopeptide-Intermediate Staphylococcus aureus Working Group. N Engl J Med 340, 493–501.[CrossRef]
    [Google Scholar]
  29. Tambic, A., Power, E. G., Talsania, H., Anthony, R. M. & French, G. L. ( 1997;). Analysis of an outbreak of non-phage-typeable methicillin-resistant Staphylococcus aureus by using a randomly amplified polymorphic DNA assay. J Clin Microbiol 35, 3092–3097.
    [Google Scholar]
  30. Tran, H. L., Fiedler, F., Hodgson, D. A. & Kathariou, S. ( 1999;). Transposon-induced mutations in two loci of Listeria monocytogenes serotype 1/2a result in phage resistance and lack of N-acetylglucosamine in the teichoic acid of the cell wall. Appl Environ Microbiol 65, 4793–4798.
    [Google Scholar]
  31. Walsh, T. R. & Howe, R. A. ( 2002;). The prevalence and mechanisms of vancomycin resistance in Staphylococcus aureus. Annu Rev Microbiol 56, 657–675.[CrossRef]
    [Google Scholar]
  32. Wilkinson, B. J. & Holmes, K. M. ( 1979;). Staphylococcus aureus cell surface: capsule as a barrier to bacteriophage adsorption. Infect Immun 23, 549–552.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05210-0
Loading
/content/journal/jmm/10.1099/jmm.0.05210-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error