1887

Abstract

High-level fluoroquinolone (FQ) resistance is still infrequent in salmonellae, compared with other pathogenic enterobacteria. Data provided in this work support the hypothesis that the mechanisms that confer high-level FQ resistance on salmonellae have a prohibitive fitness cost and may thus limit the emergence of highly resistant clones. mutants that were highly resistant to ciprofloxacin (MIC = 8 and 16 μg ml) showed generation times 1.4- and 2-fold longer than their parent strains and were unable to colonize the gut of chickens. Electron microscopy showed an altered morphology for one of these mutants grown to stationary phase. Mutants selected and exhibiting intermediate resistance to ciprofloxacin (MIC = 2 μg ml) also showed growth defects on solid media but had normal generation times in liquid culture and colonized the gut of chickens. After or passage in the absence of antibiotic selective pressure, partial reversals of the fitness cost were observed, which were associated with slight decreases in resistance to quinolones and other unrelated antibiotics, but were not linked to the loss of mutations.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05178-0
2003-08-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/8/JM520815.html?itemId=/content/journal/jmm/10.1099/jmm.0.05178-0&mimeType=html&fmt=ahah

References

  1. Andersson, D. I. & Levin, B. R. ( 1999;). The biological cost of antibiotic resistance. Curr Opin Microbiol 2, 489–493.[CrossRef]
    [Google Scholar]
  2. Bagel, S., Hullen, V., Wiedemann, B. & Heisig, P. ( 1999;). Impact of gyrA and parC mutations on quinolone resistance, doubling time, and supercoiling degree of Escherichia coli. Antimicrob Agents Chemother 43, 868–875.
    [Google Scholar]
  3. Baucheron, S., Imberechts, H., Chaslus-Dancla, E., Cloeckaert, A. ( 2002;). The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar Typhimurium phage type DT204. Microb Drug Resist 8, 281–289.[CrossRef]
    [Google Scholar]
  4. Bjorkman, J., Hughes, D. & Andersson, D. I. ( 1998;). Virulence of antibiotic-resistant Salmonella typhimurium. Proc Natl Acad Sci U S A 95, 3949–3953.[CrossRef]
    [Google Scholar]
  5. Bjorkman, J., Nagaev, I., Berg, O. G., Hughes, D. & Andersson, D. I. ( 2000;). Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287, 1479–1482.[CrossRef]
    [Google Scholar]
  6. Brée, A., Dho, M. & Lafont, J. P. ( 1989;). Comparative infectivity for axenic and specific-pathogen-free chickens of O2 Escherichia coli strains with or without virulence factors. Avian Dis 33, 134–139.[CrossRef]
    [Google Scholar]
  7. Breuil, J., Brisabois, A., Casin, I., Armand-Lefevre, L., Fremy, S. & Collatz, E. ( 2000;). Antibiotic resistance in salmonellae isolated from humans and animals in France: comparative data from 1994 and 1997. J Antimicrob Chemother 46, 965–971.[CrossRef]
    [Google Scholar]
  8. Chen, J. Y., Siu, L. K., Chen, Y. H., Lu, P. L., Ho, M. & Peng, C. F. ( 2001;). Molecular epidemiology and mutations at gyrA and parC genes of ciprofloxacin-resistant Escherichia coli isolates from a Taiwan medical center. Microb Drug Resist 7, 47–53.[CrossRef]
    [Google Scholar]
  9. Chiu, C. H., Wu, T. L., Su, L. H., Chu, C., Chia, J. H., Kuo, A. J., Chien, M. S. & Lin, T. Y. ( 2002;). The emergence in Taiwan of fluoroquinolone resistance in Salmonella enterica serotype Choleraesuis. N Engl J Med 346, 413–419.[CrossRef]
    [Google Scholar]
  10. Cloeckaert, A. & Chaslus-Dancla, E. ( 2001;). Mechanisms of quinolone resistance in Salmonella. Vet Res 32, 291–300.[CrossRef]
    [Google Scholar]
  11. Deguchi, T., Fukuoka, A., Yasuda, M. & 7 other authors ( 1997;). Alterations in the GyrA subunit of DNA gyrase and the ParC subunit of topoisomerase IV in quinolone-resistant clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother 41, 699–701.
    [Google Scholar]
  12. Gillespie, S. H. & McHugh, T. D. ( 1997;). The biological cost of antimicrobial resistance. Trends Microbiol 5, 337–339.[CrossRef]
    [Google Scholar]
  13. Giraud, E., Brisabois, A., Martel, J. L. & Chaslus-Dancla, E. ( 1999;). Comparative studies of mutations in animal isolates and experimental in vitro- and in vivo-selected mutants of Salmonella spp.suggest a counterselection of highly fluoroquinolone-resistant strains in the field. Antimicrob Agents Chemother 43, 2131–2137.
    [Google Scholar]
  14. Giraud, E., Cloeckaert, A., Kerboeuf, D. & Chaslus-Dancla, E. ( 2000;). Evidence for active efflux as the primary mechanism of resistance to ciprofloxacin in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 44, 1223–1228.[CrossRef]
    [Google Scholar]
  15. Hansen, H., Rabsch, W., Heisig, P. ( 2001;). Effect of gemifloxacin on in vitro selected mutants and field isolates of Salmonella spp.with mutations in gyrA, gyrB, parC and marR. Supplementum 7th International Symposium on New Quinolones, abstract P80. J Antimicrob Chemother 47, 37. 37.
    [Google Scholar]
  16. Heisig, P. ( 1993;). High-level fluoroquinolone resistance in a Salmonella typhimurium isolate due to alterations in both gyrA and gyrB genes. J Antimicrob Chemother 32, 367–377.[CrossRef]
    [Google Scholar]
  17. Heisig, P., Kratz, B., Halle, E., Graser, Y., Altwegg, M., Rabsch, W. & Faber, J. P. ( 1995;). Identification of DNA gyrase A mutations in ciprofloxacin-resistant isolates of Salmonella typhimurium from men and cattle in Germany. Microb Drug Resist 1, 211–218.[CrossRef]
    [Google Scholar]
  18. Lenski, R. E. ( 1997;). The cost of antibiotic resistance – from the perspective of a bacterium. Ciba Found Symp 207, 131–140.
    [Google Scholar]
  19. McDonald, L. C., Chen, F. J., Lo, H. J., Yin, H. C., Lu, P. L., Huang, C. H., Chen, P., Lauderdale, T. L. & Ho, M. ( 2001;). Emergence of reduced susceptibility and resistance to fluoroquinolones in Escherichia coli in Taiwan and contributions of distinct selective pressures. Antimicrob Agents Chemother 45, 3084–3091.[CrossRef]
    [Google Scholar]
  20. Members of the SFM Antibiogram Committee ( 2003;). Comité de l'Antibiogramme de la Société Française de Microbiologie report 2003. Int J Antimicrob Agents 21, 364–391.[CrossRef]
    [Google Scholar]
  21. Molbak, K., Baggesen, D. L., Aarestrup, F. M., Ebbesen, J. M., Engberg, J., Frydendahl, K., Gerner-Smidt, P., Petersen, A. M. & Wegener, H. C. ( 1999;). An outbreak of multidrug-resistant, quinolone-resistant Salmonella enterica serotype Typhimurium DT104. N Engl J Med 341, 1420–1425.[CrossRef]
    [Google Scholar]
  22. Nakaya, H., Yasuhara, A., Yoshimura, K., Oshihoi, Y., Izumiya, H. & Watanabe, H. ( 2003;). Life-threatening infantile diarrhea from fluoroquinolone-resistant Salmonella enterica Typhimurium with mutations in both gyrA and parC. Emerg Infect Dis 9, 255–257.[CrossRef]
    [Google Scholar]
  23. NCCLS ( 1997;). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 4th edn. Approved Standards M7-A4. Wayne, PA: National Committee for Clinical Laboratory Standards.
  24. Nikaido, H. ( 1998;). Multiple antibiotic resistance and efflux. Curr Opin Microbiol 1, 516–523.[CrossRef]
    [Google Scholar]
  25. Noble, A. P., Dziuba, M., Harrison, D. J., Albritton, W. L. ( 1999;). Factors influencing capacitance-based monitoring of microbial growth. J Microbiol Methods 37, 51–64.[CrossRef]
    [Google Scholar]
  26. Olsen, S. J., DeBess, E. E., McGivern, T. E. & 7 other authors ( 2001;). A nosocomial outbreak of fluoroquinolone-resistant Salmonella infection. N Engl J Med 344, 1572–1579.[CrossRef]
    [Google Scholar]
  27. Paterson, D. L., Mulazimoglu, L., Casellas, J. M. & 8 other authors ( 2000;). Epidemiology of ciprofloxacin resistance and its relationship to extended-spectrum beta-lactamase production in Klebsiella pneumoniae isolates causing bacteremia. Clin Infect Dis 30, 473–478.[CrossRef]
    [Google Scholar]
  28. Robert, J., Cambau, E., Grenet, K., Trystram, D., Pean, Y., Fievet, M. H. & Jarlier, V. ( 2001;). Trends in quinolone susceptibility of Enterobacteriaceae among inpatients of a large university hospital: 1992–98. Clin Microbiol Infect 7, 553–561.[CrossRef]
    [Google Scholar]
  29. Schrag, S. J., Perrot, V. & Levin, B. R. ( 1997;). Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc R Soc Lond B Biol Sci 264, 1287–1291.[CrossRef]
    [Google Scholar]
  30. Spratt, B. G. ( 1996;). Antibiotic resistance: counting the cost. Curr Biol 6, 1219–1221.[CrossRef]
    [Google Scholar]
  31. Threlfall, E. J., Ward, L. R., Skinner, J. A. & Graham, A. ( 2000;). Antimicrobial drug resistance in non-typhoidal salmonellas from humans in England and Wales in 1999: decrease in multiple resistance in Salmonella enterica serotypes Typhimurium, Virchow, and Hadar. Microb Drug Resist 6, 319–325.[CrossRef]
    [Google Scholar]
  32. Walker, R. A., Lawson, A. J., Lindsay, E. A. & 7 other authors ( 2000;). Decreased susceptibility to ciprofloxacin in outbreak-associated multiresistant Salmonella typhimurium DT104. Vet Rec 147, 395–396.[CrossRef]
    [Google Scholar]
  33. Weigel, L. M., Steward, C. D. & Tenover, F. C. ( 1998;). gyrA mutations associated with fluoroquinolone resistance in eight species of Enterobacteriaceae. Antimicrob Agents Chemother 42, 2661–2667.
    [Google Scholar]
  34. Wiuff, C., Madsen, M., Baggesen, D. L. & Aarestrup, F. M. ( 2000;). Quinolone resistance among Salmonella enterica from cattle, broilers, and swine in Denmark. Microb Drug Resist 6, 11–17.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05178-0
Loading
/content/journal/jmm/10.1099/jmm.0.05178-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error