1887

Abstract

serovar Typhi () causes human typhoid fever, a serious and widespread disease in developing countries. Other serovars are associated with food-borne infections. The recent emergence of multi-drug-resistant strains highlights the need for better preventive measures, including vaccination. The available vaccines against infection do not confer optimal protection. The design of new vaccines must be based on the identification of suitable virulence genes and on knowledge of the immunological mechanisms of resistance to the disease. Control and clearance of a vaccine strain rely on the phagocyte oxidative burst, reactive nitrogen intermediates, inflammatory cytokines and CD4 TCR-αβ T cells and are controlled by genes including and MHC class II. Vaccine-induced resistance to reinfection requires the presence of Th1-type immunological memory and anti- antibodies. The interaction between T and B cells is essential for the development of resistance following vaccination. The identification of immunodeficiencies that render individuals more susceptible to salmonellosis must be taken into consideration when designing and testing live attenuated vaccines. An ideal live vaccine should therefore be safe, regardless of the immunological status of the vaccinee, but still immunogenic.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05173-0
2003-06-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/6/JM520603.html?itemId=/content/journal/jmm/10.1099/jmm.0.05173-0&mimeType=html&fmt=ahah

References

  1. Acharya, I. L., Lowe, C. U., Thapa, R. & 10 other authors ( 1987;). Prevention of typhoid fever in Nepal with the Vi capsular polysaccharide of Salmonella typhi.A preliminary report. N Engl J Med 317, 1101–1104.[CrossRef]
    [Google Scholar]
  2. Altare, F., Lammas, D., Revy, P. & 14 other authors ( 1998;). Inherited interleukin 12 deficiency in a child with bacille Calmette–Guerin and Salmonella enteritidis disseminated infection. J Clin Invest 102, 2035–2040.[CrossRef]
    [Google Scholar]
  3. Berchieri, A., Jr & Barrow, P. A. ( 1990;). Further studies on the inhibition of colonization of the chicken alimentary tract with Salmonella typhimurium by pre-colonization with an avirulent mutant. Epidemiol Infect 104, 427–441.[CrossRef]
    [Google Scholar]
  4. Biozzi, G., Howard, J. G., Halpern, B. N., Stiffel, C. & Mouton, D. ( 1960;). The kinetics of blood clearance of isotopically labelled Salmonella enteritidis by the reticuloendothelial system in mice. Immunology 3, 74–89.
    [Google Scholar]
  5. Bodey, G. P. ( 1974;). Infections in cancer patients.I. Bacterial infections. Rev Bras Pesqui Med Biol 7, 453–459.
    [Google Scholar]
  6. Brown, A. & Hormaeche, C. E. ( 1989;). The antibody response to salmonellae in mice and humans studied by immunoblots and ELISA. Microb Pathog 6, 445–454.[CrossRef]
    [Google Scholar]
  7. Cao, Y., Wen, Z. & Lu, D. ( 1992;). Construction of a recombinant oral vaccine against Salmonella typhi and Salmonella typhimurium. Infect Immun 60, 2823–2827.
    [Google Scholar]
  8. Carter, P. B. & Collins, F. M. ( 1974;). The route of enteric infection in normal mice. J Exp Med 139, 1189–1203.[CrossRef]
    [Google Scholar]
  9. Chakravortty, D., Hansen-Wester, I. & Hensel, M. ( 2002;). Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med 195, 1155–1166.[CrossRef]
    [Google Scholar]
  10. Collins, F. M. ( 1974;). Vaccines and cell-mediated immunity. Bacteriol Rev 38, 371–402.
    [Google Scholar]
  11. Cooke, E. M. ( 1990;). Epidemiology of foodborne illness: UK. Lancet 336, 790–793.[CrossRef]
    [Google Scholar]
  12. Cookson, B. T. & Bevan, M. J. ( 1997;). Identification of a natural T cell epitope presented by Salmonella-infected macrophages and recognized by T cells from orally immunized mice. J Immunol 158, 4310–4319.
    [Google Scholar]
  13. Cooper, G. L. & Thorns, C. J. ( 1996;). Evaluation of SEF14 fimbrial dot blot and flagellar western blot tests as indicators of Salmonella enteritidis infection in chickens. Vet Rec 138, 149–153.[CrossRef]
    [Google Scholar]
  14. Cooper, G. L., Venables, L. M., Woodward, M. J. & Hormaeche, C. E. ( 1994;). Vaccination of chickens with strain CVL30, a genetically defined Salmonella enteritidis aroA live oral vaccine candidate. Infect Immun 62, 4747–4754.
    [Google Scholar]
  15. Curnutte, J. T., Scott, P. J. & Mayo, L. A. ( 1989;). Cytosolic components of the respiratory burst oxidase: resolution of four components, two of which are missing in complementing types of chronic granulomatous disease. Proc Natl Acad Sci U S A 86, 825–829.[CrossRef]
    [Google Scholar]
  16. de Jong, R., Altare, F., Haagen, I. A. & 9 other authors ( 1998;). Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 280, 1435–1438.[CrossRef]
    [Google Scholar]
  17. Dunlap, N. E., Benjamin, W. H., Jr, McCall, R. D., Jr, Tilden, A. B. & Briles, D. E. ( 1991;). A ‘safe-site’ for Salmonella typhimurium is within splenic cells during the early phase of infection in mice. Microb Pathog 10, 297–310.[CrossRef]
    [Google Scholar]
  18. Dunstan, S. J., Stephens, H. A., Blackwell, J. M. & 10 other authors ( 2001a;). Genes of the class II and class III major histocompatibility complex are associated with typhoid fever in Vietnam. J Infect Dis 183, 261–268.[CrossRef]
    [Google Scholar]
  19. Dunstan, S. J., Ho, V. A., Duc, C. M. & 12 other authors ( 2001b;). Typhoid fever and genetic polymorphisms at the natural resistance-associated macrophage protein 1. J Infect Dis 183, 1156–1160.[CrossRef]
    [Google Scholar]
  20. Eisenstein, T. K., Killar, L. M., Stocker, B. A. & Sultzer, B. M. ( 1984a;). Cellular immunity induced by avirulent Salmonella in LPS-defective C3H/HeJ mice. J Immunol 133, 958–961.
    [Google Scholar]
  21. Eisenstein, T. K., Killar, L. M. & Sultzer, B. M. ( 1984b;). Immunity to infection with Salmonella typhimurium: mouse-strain differences in vaccine- and serum-mediated protection. J Infect Dis 150, 425–435.[CrossRef]
    [Google Scholar]
  22. Galdiero, M., De Martino, L., Marcatili, A., Nuzzo, I., Vitiello, M. & Cipollaro de l'Ero, G. ( 1998;). Th1 and Th2 cell involvement in immune response to Salmonella typhimurium porins. Immunology 94, 5–13.[CrossRef]
    [Google Scholar]
  23. Gotuzzo, E., Frisancho, O., Sanchez, J., Liendo, G., Carrillo, C., Black, R. E. & Morris, J. G., Jr ( 1991;). Association between the acquired immunodeficiency syndrome and infection with Salmonella typhi or Salmonella paratyphi in an endemic typhoid area. Arch Intern Med 151, 381–382.[CrossRef]
    [Google Scholar]
  24. Harrison, J. A., Villarreal-Ramos, B., Mastroeni, P., Demarco de Hormaeche, R. & Hormaeche, C. E. ( 1997;). Correlates of protection induced by live Aro Salmonella typhimurium vaccines in the murine typhoid model. Immunology 90, 618–625.[CrossRef]
    [Google Scholar]
  25. Hess, J., Ladel, C., Miko, D. & Kaufmann, S. H. ( 1996;). Salmonella typhimurium aroA infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and IFN-gamma in bacterial clearance independent of intracellular location. J Immunol 156, 3321–3326.
    [Google Scholar]
  26. Hohmann, E. L. ( 2001;). Nontyphoidal salmonellosis. Clin Infect Dis 32, 263–269.[CrossRef]
    [Google Scholar]
  27. Hopkins, S. A. & Kraehenbuhl, J. P. ( 1997;). Dendritic cells of the murine Peyer's patches colocalize with Salmonella typhimurium avirulent mutants in the subepithelial dome. Adv Exp Med Biol 417, 105–109.
    [Google Scholar]
  28. Hormaeche, C. E. ( 1990;). Dead salmonellae or their endotoxin accelerate the early course of a Salmonella infection in mice. Microb Pathog 9, 213–218.[CrossRef]
    [Google Scholar]
  29. Hormaeche, C. E., Fahrenkrog, M. C., Pettifor, R. A. & Brock, J. ( 1981;). Acquired immunity to Salmonella typhimurium and delayed (footpad) hypersensitivity in BALB/c mice. Immunology 43, 547–554.
    [Google Scholar]
  30. Hormaeche, C. E., Harrington, K. A. & Joysey, H. S. ( 1985;). Natural resistance to salmonellae in mice: control by genes within the major histocompatibility complex. J Infect Dis 152, 1050–1056.[CrossRef]
    [Google Scholar]
  31. Hormaeche, C. E., Joysey, H. S., Desilva, L., Izhar, M. & Stocker, B. A. ( 1991;). Immunity conferred by Aro Salmonella live vaccines. Microb Pathog 10, 149–158.[CrossRef]
    [Google Scholar]
  32. Hormaeche, C. E., Mastroeni, P., Harrison, J. A., Demarco de Hormaeche, R., Svenson, S. & Stocker, B. A. ( 1996;). Protection against oral challenge three months after i.v. immunization of BALB/c mice with live aro Salmonella typhimurium and Salmonella enteritidis vaccines is serotype (species)-dependent and only partially determined by the main LPS O antigen. Vaccine 14, 251–259.[CrossRef]
    [Google Scholar]
  33. Ivanhoff, B. ( 1995;). Typhoid fever, global situation and WHO recommendations. Southeast Asian J Trop Med Public Health 26 (Suppl. 2), 1–6.
    [Google Scholar]
  34. Kantele, A., Arvilommi, H. & Jokinen, I. ( 1986;). Specific immunoglobulin-secreting human blood cells after peroral vaccination against Salmonella typhi. J Infect Dis 153, 1126–1131.[CrossRef]
    [Google Scholar]
  35. Kantele, A., Arvilommi, H., Kantele, J. M., Rintala, L. & Makela, P. H. ( 1991;). Comparison of the human immune response to live oral, killed oral or killed parenteral Salmonella typhi Ty21a vaccines. Microb Pathog 10, 117–126.[CrossRef]
    [Google Scholar]
  36. Killar, L. M. & Eisenstein, T. K. ( 1984;). Differences in delayed-type hypersensitivity responses in various mouse strains in the C3H lineage infected with Salmonella typhimurium, strain SL3235. J Immunol 133, 1190–1196.
    [Google Scholar]
  37. Killar, L. M. & Eisenstein, T. K. ( 1986;). Delayed-type hypersensitivity and immunity to Salmonella typhimurium. Infect Immun 52, 504–508.
    [Google Scholar]
  38. Klugman, K. P., Koornhof, H. J., Robbins, J. B. & Le Cam, N. N. ( 1996;). Immunogenicity, efficacy and serological correlate of protection of Salmonella typhi Vi capsular polysaccharide vaccine three years after immunization. Vaccine 14, 435–438.[CrossRef]
    [Google Scholar]
  39. Kossaczka, Z., Lin, F. Y., Ho, V. A. & 11 other authors ( 1999;). Safety and immunogenicity of Vi conjugate vaccines for typhoid fever in adults, teenagers, and 2- to 4-year-old children in Vietnam. Infect Immun 67, 5806–5810.
    [Google Scholar]
  40. Kuusi, N., Nurminen, M., Saxen, H., Valtonen, M. & Makela, P. H. ( 1979;). Immunization with major outer membrane proteins in experimental salmonellosis of mice. Infect Immun 25, 857–862.
    [Google Scholar]
  41. Levine, M. M., Ferreccio, C., Black, R. E., Tacket, C. O. & Germanier, R. ( 1989;). Progress in vaccines against typhoid fever. Rev Infect Dis 11 (Suppl. 3), S552–S567.[CrossRef]
    [Google Scholar]
  42. Liang-Takasaki, C. J., Saxen, H., Makela, P. H. & Leive, L. ( 1983;). Complement activation by polysaccharide of lipopolysaccharide: an important virulence determinant of salmonellae. Infect Immun 41, 563–569.
    [Google Scholar]
  43. Lin, F. Y., Ho, V. A., Khiem, H. B. & 9 other authors ( 2001;). The efficacy of a Salmonella typhi Vi conjugate vaccine in two-to-five-year-old children. N Engl J Med 344, 1263–1269.[CrossRef]
    [Google Scholar]
  44. Lo, W. F., Ong, H., Metcalf, E. S. & Soloski, M. J. ( 1999;). T cell responses to Gram-negative intracellular bacterial pathogens: a role for CD8+ T cells in immunity to Salmonella infection and the involvement of MHC class Ib molecules. J Immunol 162, 5398–5406.
    [Google Scholar]
  45. Lo, W. F., Woods, A. S., DeCloux, A., Cotter, R. J., Metcalf, E. S. & Soloski, M. J. ( 2000;). Molecular mimicry mediated by MHC class Ib molecules after infection with gram-negative pathogens. Nat Med 6, 215–218.[CrossRef]
    [Google Scholar]
  46. Marriott, I., Hammond, T. G., Thomas, E. K. & Bost, K. L. ( 1999;). Salmonella efficiently enter and survive within cultured CD11c+ dendritic cells initiating cytokine expression. Eur J Immunol 29, 1107–1115.[CrossRef]
    [Google Scholar]
  47. Maskell, D. J., Hormaeche, C. E., Harrington, K. A., Joysey, H. S. & Liew, F. Y. ( 1987;). The initial suppression of bacterial growth in a Salmonella infection is mediated by a localized rather than a systemic response. Microb Pathog 2, 295–305.[CrossRef]
    [Google Scholar]
  48. Mastroeni, P., Harrison, J. A., Robinson, J. H., Clare, S., Khan, S., Maskell, D. J., Dougan, G. & Hormaeche, C. E. ( 1998;). Interleukin-12 is required for control of the growth of attenuated aromatic-compound-dependent salmonellae in BALB/c mice: role of gamma interferon and macrophage activation. Infect Immun 66, 4767–4776.
    [Google Scholar]
  49. Mastroeni, P., Simmons, C., Fowler, R., Hormaeche, C. E. & Dougan, G. ( 2000a;). Igh-6 −/− (B-cell-deficient) mice fail to mount solid acquired resistance to oral challenge with virulent Salmonella enterica serovar typhimurium and show impaired Th1 T-cell responses to Salmonella antigens. Infect Immun 68, 46–53.[CrossRef]
    [Google Scholar]
  50. Mastroeni, P., Vazquez-Torres, A., Fang, F. C., Xu, Y., Khan, S., Hormaeche, C. E. & Dougan, G. ( 2000b;). Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis.II. Effects on microbial proliferation and host survival in vivo. J Exp Med 192, 237–248.[CrossRef]
    [Google Scholar]
  51. Mastroeni, P., Chabalgoity, J. A., Dunstan, S. J., Maskell, D. J. & Dougan, G. ( 2001;). Salmonella: immune responses and vaccines. Vet J 161, 132–164.[CrossRef]
    [Google Scholar]
  52. Matsui, K. & Arai, T. ( 1989;). Protective immunity induced by porin in experimental mouse salmonellosis. Microbiol Immunol 33, 699–708.[CrossRef]
    [Google Scholar]
  53. McClelland, M., Sanderson, K. E., Spieth, J. & 23 other authors ( 2001;). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852–856.[CrossRef]
    [Google Scholar]
  54. McSorley, S. J. & Jenkins, M. K. ( 2000;). Antibody is required for protection against virulent but not attenuated Salmonella enterica serovar Typhimurium. Infect Immun 68, 3344–3348.[CrossRef]
    [Google Scholar]
  55. McSorley, S. J., Cookson, B. T. & Jenkins, M. K. ( 2000;). Characterization of CD4+ T cell responses during natural infection with Salmonella typhimurium. J Immunol 164, 986–993.[CrossRef]
    [Google Scholar]
  56. Mirza, S. H., Beeching, N. J. & Hart, C. A. ( 1996;). Multi-drug resistant typhoid: a global problem. J Med Microbiol 44, 317–319.[CrossRef]
    [Google Scholar]
  57. Mittrucker, H. W., Kohler, A., Mak, T. W. & Kaufmann, S. H. ( 1999;). Critical role of CD28 in protective immunity against Salmonella typhimurium. J Immunol 163, 6769–6776.
    [Google Scholar]
  58. Mittrucker, H. W., Raupach, B., Kohler, A. & Kaufmann, S. H. ( 2000;). Cutting edge: role of B lymphocytes in protective immunity against Salmonella typhimurium infection. J Immunol 164, 1648–1652.[CrossRef]
    [Google Scholar]
  59. Mixter, P. F., Camerini, V., Stone, B. J., Miller, V. L. & Kronenberg, M. ( 1994;). Mouse T lymphocytes that express a gamma delta T-cell antigen receptor contribute to resistance to Salmonella infection in vivo. Infect Immun 62, 4618–4621.
    [Google Scholar]
  60. Mouy, R. ( 1989;). Chronic septic granulomatosis.Clinical and therapeutic aspects. Ann Pediatr (Paris) 36, 374–378 (in French).
    [Google Scholar]
  61. Mukkur, T. K., McDowell, G. H., Stocker, B. A. & Lascelles, A. K. ( 1987;). Protection against experimental salmonellosis in mice and sheep by immunisation with aromatic-dependent Salmonella typhimurium. J Med Microbiol 24, 11–19.[CrossRef]
    [Google Scholar]
  62. Murphy, J. R., Wasserman, S. S., Baqar, S., Schlesinger, L., Ferreccio, C., Lindberg, A. A. & Levine, M. M. ( 1989;). Immunity to Salmonella typhi: considerations relevant to measurement of cellular immunity in typhoid-endemic regions. Clin Exp Immunol 75, 228–233.
    [Google Scholar]
  63. Nauciel, C. & Espinasse-Maes, F. ( 1992;). Role of gamma interferon and tumor necrosis factor alpha in resistance to Salmonella typhimurium infection. Infect Immun 60, 450–454.
    [Google Scholar]
  64. Nauciel, C., Ronco, E., Guenet, J. L. & Pla, M. ( 1988;). Role of H-2 and non-H-2 genes in control of bacterial clearance from the spleen in Salmonella typhimurium-infected mice. Infect Immun 56, 2407–2411.
    [Google Scholar]
  65. O'Brien, A. D., Metcalf, E. S. & Rosenstreich, D. L. ( 1982;). Defect in macrophage effector function confers Salmonella typhimurium susceptibility on C3H/HeJ mice. Cell Immunol 67, 325–333.[CrossRef]
    [Google Scholar]
  66. Ogunniyi, A. D., Manning, P. A. & Kotlarski, I. ( 1994;). A Salmonella enteritidis 11RX pilin induces strong T-lymphocyte responses. Infect Immun 62, 5376–5383.
    [Google Scholar]
  67. Ottenhoff, T. H., Kumararatne, D. & Casanova, J. L. ( 1998;). Novel human immunodeficiencies reveal the essential role of type-I cytokines in immunity to intracellular bacteria. Immunol Today 19, 491–494.[CrossRef]
    [Google Scholar]
  68. Parkhill, J., Dougan, G., James, K. D. & 38 other authors ( 2001;). Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413, 848–852.[CrossRef]
    [Google Scholar]
  69. Pasetti, M. F., Salerno-Goncalves, R. & Sztein, M. B. ( 2002;). Salmonella enterica serovar Typhi live vector vaccines delivered intranasally elicit regional and systemic specific CD8+ major histocompatibility class I-restricted cytotoxic T lymphocytes. Infect Immun 70, 4009–4018.[CrossRef]
    [Google Scholar]
  70. Picard, C., Fieschi, C., Altare, F. & 21 other authors ( 2002;). Inherited interleukin-12 deficiency: IL-12B genotype and clinical phenotype of 13 patients from six kindreds. Am J Hum Genet 70, 336–348.[CrossRef]
    [Google Scholar]
  71. Pope, M., Kotlarski, I. & Doherty, K. ( 1994;). Induction of Lyt-2+ cytotoxic T lymphocytes following primary and secondary Salmonella infection. Immunology 81, 177–182.
    [Google Scholar]
  72. Rescigno, M., Urbano, M., Valzasina, B., Francolini, M., Rotta, G., Bonasio, R., Granucci, F., Kraehenbuhl, J. P. & Ricciardi-Castagnoli, P. ( 2001;). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2, 361–367.[CrossRef]
    [Google Scholar]
  73. Richter-Dahlfors, A., Buchan, A. M. J. & Finlay, B. B. ( 1997;). Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med 186, 569–580.[CrossRef]
    [Google Scholar]
  74. Robertsson, J. A., Fossum, C., Svenson, S. B. & Lindberg, A. A. ( 1982a;). Salmonella typhimurium infection in calves: specific immune reactivity against O-antigenic polysaccharide detectable in in vitro assays. Infect Immun 37, 728–736.
    [Google Scholar]
  75. Robertsson, J. A., Svenson, S. B. & Lindberg, A. A. ( 1982b;). Salmonella typhimurium infection in calves: delayed specific skin reactions directed against the O-antigenic polysaccharide chain. Infect Immun 37, 737–748.
    [Google Scholar]
  76. Salerno-Goncalves, R., Pasetti, M. F. & Sztein, M. B. ( 2002;). Characterization of CD8+ effector T cell responses in volunteers immunized with Salmonella enterica serovar Typhi strain Ty21a typhoid vaccine. J Immunol 169, 2196–2203.[CrossRef]
    [Google Scholar]
  77. Saxen, H., Reima, I. & Makela, P. H. ( 1987;). Alternative complement pathway activation by Salmonella O polysaccharide as a virulence determinant in the mouse. Microb Pathog 2, 15–28.[CrossRef]
    [Google Scholar]
  78. Schafer, R. & Eisenstein, T. K. ( 1992;). Natural killer cells mediate protection induced by a Salmonella aroA mutant. Infect Immun 60, 791–797.
    [Google Scholar]
  79. Segall, T. & Lindberg, A. A. ( 1993;). Oral vaccination of calves with an aromatic-dependent Salmonella dublin (O9, 12) hybrid expressing O4, 12 protects against S.dublin (O9, 12) but not against Salmonella typhimurium (O4, 5, 12). Infect Immun 61, 1222–1231.
    [Google Scholar]
  80. Shea, J. E., Hensel, M., Gleeson, C. & Holden, D. W. ( 1996;). Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci U S A 93, 2593–2597.[CrossRef]
    [Google Scholar]
  81. Singh, M., Ganguly, N. K., Kumar, L. & Vohra, H. ( 1999;). Protective efficacy and immunogenicity of Vi-porin conjugate against Salmonella typhi. Microbiol Immunol 43, 535–542.[CrossRef]
    [Google Scholar]
  82. Sinha, K., Mastroeni, P., Harrison, J., de Hormaeche, R. D. & Hormaeche, C. E. ( 1997;). Salmonella typhimurium aroA, htrA, and aroD htrA mutants cause progressive infections in athymic (nu/nu) BALB/c mice. Infect Immun 65, 1566–1569.
    [Google Scholar]
  83. Slauch, J. M., Mahan, M. J. & Mekalanos, J. J. ( 1994;). In vivo expression technology for selection of bacterial genes specifically induced in host tissues. Methods Enzymol 235, 481–492.
    [Google Scholar]
  84. Stabel, T. J., Mayfield, J. E., Morfitt, D. C. & Wannemuehler, M. J. ( 1993;). Oral immunization of mice and swine with an attenuated Salmonella choleraesuis cya-12 Δ(crp–cdt)19] mutant containing a recombinant plasmid. Infect Immun 61, 610–618.
    [Google Scholar]
  85. Svenson, S. B., Nurminen, M. & Lindberg, A. A. ( 1979;). Artificial Salmonella vaccines: O-antigenic oligosaccharide-protein conjugates induce protection against infection with Salmonella typhimurium. Infect Immun 25, 863–872.
    [Google Scholar]
  86. Svensson, M., Johansson, C. & Wick, M. J. ( 2000;). Salmonella enterica serovar Typhimurium-induced maturation of bone marrow-derived dendritic cells. Infect Immun 68, 6311–6320.[CrossRef]
    [Google Scholar]
  87. Sztein, M. B., Wasserman, S. S., Tacket, C. O., Edelman, R., Hone, D., Lindberg, A. A. & Levine, M. M. ( 1994;). Cytokine production patterns and lymphoproliferative responses in volunteers orally immunized with attenuated vaccine strains of Salmonella typhi. J Infect Dis 170, 1508–1517.[CrossRef]
    [Google Scholar]
  88. Sztein, M. B., Tanner, M. K., Polotsky, Y., Orenstein, J. M. & Levine, M. M. ( 1995;). Cytotoxic T lymphocytes after oral immunization with attenuated vaccine strains of Salmonella typhi in humans. J Immunol 155, 3987–3993.
    [Google Scholar]
  89. Szu, S. C., Stone, A. L., Robbins, J. D., Schneerson, R. & Robbins, J. B. ( 1987;). Vi capsular polysaccharide-protein conjugates for prevention of typhoid fever.Preparation, characterization, and immunogenicity in laboratory animals. J Exp Med 166, 1510–1524.[CrossRef]
    [Google Scholar]
  90. Szu, S. C., Li, X. R., Schneerson, R., Vickers, J. H., Bryla, D. & Robbins, J. B. ( 1989;). Comparative immunogenicities of Vi polysaccharide-protein conjugates composed of cholera toxin or its B subunit as a carrier bound to high- or lower-molecular-weight Vi. Infect Immun 57, 3823–3827.
    [Google Scholar]
  91. Taylor, P. D., Inchley, C. J. & Gallagher, M. P. ( 1998;). The Salmonella typhimurium AhpC polypeptide is not essential for virulence in BALB/c mice but is recognized as an antigen during infection. Infect Immun 66, 3208–3217.
    [Google Scholar]
  92. Thatte, J., Rath, S. & Bal, V. ( 1993;). Immunization with live versus killed Salmonella typhimurium leads to the generation of an IFN-gamma-dominant versus an IL-4-dominant immune response. Int Immunol 5, 1431–1436.[CrossRef]
    [Google Scholar]
  93. Tite, J. P., Dougan, G. & Chatfield, S. N. ( 1991;). The involvement of tumor necrosis factor in immunity to Salmonella infection. J Immunol 147, 3161–3164.
    [Google Scholar]
  94. Todd, E. ( 1990;). Epidemiology of foodborne illness: North America. Lancet 336, 788–790.[CrossRef]
    [Google Scholar]
  95. Udhayakumar, V. & Muthukkaruppan, V. R. ( 1987;). An outer membrane protein (porin) as an eliciting antigen for delayed-type hypersensitivity in murine salmonellosis. Infect Immun 55, 822–824.
    [Google Scholar]
  96. Vazquez-Torres, A., Jones-Carson, J., Baumler, A. J. & 7 other authors ( 1999;). Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401, 804–808.[CrossRef]
    [Google Scholar]
  97. Vazquez-Torres, A., Xu, Y., Jones-Carson, J., Holden, D. W., Lucia, S. M., Dinauer, M. C., Mastroeni, P. & Fang, F. C. ( 2000;). Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287, 1655–1658.[CrossRef]
    [Google Scholar]
  98. Vazquez-Torres, A., Fantuzzi, G., Edwards, C. K., III, Dinarello, C. A. & Fang, F. C. ( 2001;). Defective localization of the NADPH phagocyte oxidase to Salmonella-containing phagosomes in tumor necrosis factor p55 receptor-deficient macrophages. Proc Natl Acad Sci U S A 98, 2561–2565.[CrossRef]
    [Google Scholar]
  99. Vidal, S. M., Malo, D., Vogan, K., Skamene, E. & Gros, P. ( 1993;). Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73, 469–485.[CrossRef]
    [Google Scholar]
  100. Vordermeier, H. M. & Kotlarski, I. ( 1990a;). Identification of antigens which stimulate T lymphocytes of Salmonella enteritidis 11RX immunized mice. Immunol Cell Biol 68, 299–305.[CrossRef]
    [Google Scholar]
  101. Vordermeier, H. M. & Kotlarski, I. ( 1990b;). Partial purification and characterization of low molecular weight antigens of Salmonella enteritidis 11RX. Immunol Cell Biol 68, 307–316.[CrossRef]
    [Google Scholar]
  102. Vordermeier, H. M., Pope, M. & Kotlarski, I. ( 1990;). Presentation of Salmonella antigens by peritoneal cells of normal and Salmonella-infected mice. Immunol Cell Biol 68, 161–172.[CrossRef]
    [Google Scholar]
  103. Warren, J., Mastroeni, P., Dougan, G., Noursadeghi, M., Cohen, J., Walport, M. J. & Botto, M. ( 2002;). Increased susceptibility of C1q-deficient mice to Salmonella enterica serovar Typhimurium infection. Infect Immun 70, 551–557.[CrossRef]
    [Google Scholar]
  104. Watson, D. C., Robbins, J. B. & Szu, S. C. ( 1992;). Protection of mice against Salmonella typhimurium with an O-specific polysaccharide-protein conjugate vaccine. Infect Immun 60, 4679–4686.
    [Google Scholar]
  105. Weintraub, B. C., Eckmann, L., Okamoto, S., Hense, M., Hedrick, S. M. & Fierer, J. ( 1997;). Role of αβ and γδ T cells in the host response to Salmonella infection as demonstrated in T-cell-receptor-deficient mice of defined Ity genotypes. Infect Immun 65, 2306–2312.
    [Google Scholar]
  106. Xu, H. R., Hsu, H. S., Moncure, C. W. & King, R. A. ( 1993;). Correlation of antibody titres induced by vaccination with protection in mouse typhoid. Vaccine 11, 725–729.[CrossRef]
    [Google Scholar]
  107. Yrlid, U., Svensson, M., Hakansson, A., Chambers, B. J., Ljunggren, H. G. & Wick, M. J. ( 2001;). In vivo activation of dendritic cells and T cells during Salmonella enterica serovar Typhimurium infection. Infect Immun 69, 5726–5735.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05173-0
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error