1887

Abstract

is an opportunistic respiratory pathogen that accounts for most of the morbidity and mortality in cystic fibrosis (CF) patients. In CF-affected lungs, the bacteria undergo conversion from a non-mucoid to a non-tractable mucoid phenotype, due to overproduction of alginate. The effect of alginate production on pathogenicity was investigated by using an acute lung infection mouse model that compared a non-mucoid strain, PAO1, to its constitutive alginate-overproducing derivative, Alg PAO, and an alginate-defective strain, Alg PAO. Bacterial suspensions were instilled into the left bronchus and examined 24 and 48 h post-infection. The highest bacterial loads and the most severe lung pathology were observed with strain Alg PAO at 24 h post-infection, which may have been due to an increase in expression of bacterial elastase by the mutant. Significantly lower lung and spleen bacterial loads were found in the two non-mucoid (PAO1 and Alg PAO) groups, compared to the mucoid Alg PAO group, between 24 and 48 h post-infection. The positive correlation between lung bacteriology and lung macroscopic pathology in the Alg PAO group suggests that alginate production not only impedes pulmonary clearing, but also results in severe lung damage. Positive correlations between IL12 levels and lung macroscopic pathology, and between IL12 and IFN-γ levels in the Alg PAO group, suggested a possible contribution of these pro-inflammatory cytokines to tissue damage. No significant differences were found between the three groups in lung cytokine responses at 24 or 48 h post-infection. However, on comparison within each group at 24 and 48 h post-infection, a significant increase in the pro-inflammatory cytokine IFN-γ was observed. Higher ratios of IFN-γ/IL4 and IFN-γ/IL10, but lower IL10 levels, were also found in all three groups. These results indicate a Th1-predominated immune response in these animals. Such cytokine responses could have aided the clearance of non-mucoid , but were not sufficient to alleviate infection by the mucoid variants. Alginate production may promote survival and persistence of this pathogenic micro-organism in the lung.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05122-0
2003-09-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/9/JM520901.html?itemId=/content/journal/jmm/10.1099/jmm.0.05122-0&mimeType=html&fmt=ahah

References

  1. Baltimore, R. S., Christie, C. D. & Smith, G. J. ( 1989;). Immunohistopathologic localization of Pseudomonas aeruginosa in lungs from patients with cystic fibrosis.Implications for the pathogenesis of progressive lung deterioration. Am Rev Respir Dis 140, 1650–1661.[CrossRef]
    [Google Scholar]
  2. Banchereau, J. ( 1995;). Converging and diverging properties of human interleukin-4 and interleukin-10. Behring Inst Mitt 96, 58–77.
    [Google Scholar]
  3. Belardelli, F. ( 1995;). Role of interferons and other cytokines in the regulation of the immune response. Acta Pathol Microbiol Immunol Scand 103, 161–179.[CrossRef]
    [Google Scholar]
  4. Blackwood, L. L. & Pennington, J. E. ( 1981;). Influence of mucoid coating on clearance of Pseudomonas aeruginosa from lungs. Infect Immun 32, 443–448.
    [Google Scholar]
  5. Bonfield, T. L., Konstan, M. W., Burfeind, P., Panuska, J. R., Hilliard, J. B. & Berger, M. ( 1995a;). Normal bronchial epithelial cells constitutively produce the anti-inflammatory cytokine interleukin-10, which is downregulated in cystic fibrosis. Am J Respir Cell Mol Biol 13, 257–261.[CrossRef]
    [Google Scholar]
  6. Bonfield, T. L., Panuska, J. R., Konstan, M. W., Hilliard, K. A., Hilliard, J. B., Ghnaim, H. & Berger, M. ( 1995b;). Inflammatory cytokines in cystic fibrosis lungs. Am J Respir Crit Care Med 152, 2111–2118.[CrossRef]
    [Google Scholar]
  7. Boucher, J. C., Yu, H., Mudd, M. H. & Deretic, V. ( 1997;). Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect Immun 65, 3838–3846.
    [Google Scholar]
  8. Cabral, D. A., Loh, B. A. & Speert, D. P. ( 1987;). Mucoid Pseudomonas aeruginosa resists nonopsonic phagocytosis by human neutrophils and macrophages. Pediatr Res 22, 429–431.[CrossRef]
    [Google Scholar]
  9. Chmiel, J. F., Konstan, M. W., Knesebeck, J. E., Hilliard, J. B., Bonfield, T. L., Dawson, D. V. & Berger, M. ( 1999;). IL-10 attenuates excessive inflammation in chronic Pseudomonas infection in mice. Am J Respir Crit Care Med 160, 2040–2047.[CrossRef]
    [Google Scholar]
  10. Chmiel, J. F., Konstan, M. W., Saadane, A., Krenicky, J. E., Lester Kirchner, H. & Berger, M. ( 2002;). Prolonged inflammatory response to acute Pseudomonas challenge in interleukin-10 knockout mice. Am J Respir Crit Care Med 165, 1176–1181.[CrossRef]
    [Google Scholar]
  11. Davidson, I. W., Sutherland, I. W. & Lawson, C. J. ( 1977;). Localization of O-acetyl groups of bacterial alginate. J Gen Microbiol 98, 603–606.[CrossRef]
    [Google Scholar]
  12. DeVault, J. D., Kimbara, K. & Chakrabarty, A. M. ( 1990;). Pulmonary dehydration and infection in cystic fibrosis: evidence that ethanol activates alginate gene expression and induction of mucoidy in Pseudomonas aeruginosa. Mol Microbiol 4, 737–745.[CrossRef]
    [Google Scholar]
  13. DeVries, C. A. & Ohman, D. E. ( 1994;). Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative alternate sigma factor, and shows evidence for autoregulation. J Bacteriol 176, 6677–6687.
    [Google Scholar]
  14. Doig, P., Smith, N. R., Todd, T. & Irvin, R. T. ( 1987;). Characterization of the binding of Pseudomonas aeruginosa alginate to human epithelial cells. Infect Immun 55, 1517–1522.
    [Google Scholar]
  15. Eftekhar, F. & Speert, D. P. ( 1988;). Alginase treatment of mucoid Pseudomonas aeruginosa enhances phagocytosis by human monocyte-derived macrophages. Infect Immun 56, 2788–2793.
    [Google Scholar]
  16. Evans, L. R. & Linker, A. ( 1973;). Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. J Bacteriol 116, 915–924.
    [Google Scholar]
  17. Evans, D. J., Allison, D. G., Brown, M. R. & Gilbert, P. ( 1991;). Susceptibility of Pseudomonas aeruginosa and Escherichia coli biofilms towards ciprofloxacin: effect of specific growth rate. J Antimicrob Chemother 27, 177–184.[CrossRef]
    [Google Scholar]
  18. Fyfe, J. A. M. & Govan, J. R. W. ( 1980;). Alginate synthesis in mucoid Pseudomonas aeruginosa: a chromosomal locus involved in control. J Gen Microbiol 119, 443–450.
    [Google Scholar]
  19. Garrett, E. S., Perlegas, D. & Wozniak, D. J. ( 1999;). Negative control of flagellum synthesis in Pseudomonas aeruginosa is modulated by the alternative sigma factor AlgT (AlgU). J Bacteriol 181, 7401–7404.
    [Google Scholar]
  20. Germann, T., Bongartz, M., Dlugonska, H. & 7 other authors ( 1995;). Interleukin-12 profoundly up-regulates the synthesis of antigen-specific complement-fixing IgG2a, IgG2b and IgG3 antibody subclasses in vivo. Eur J Immunol 25, 823–829.[CrossRef]
    [Google Scholar]
  21. Govan, J. R. W. & Fyfe, J. A. M. ( 1978;). Mucoid Pseudomonas aeruginosa and cystic fibrosis: resistance of the mucoid form to carbenicillin, flucloxacillin and tobramycin and the isolation of mucoid variants in vitro. J Antimicrob Chemother 4, 233–240.[CrossRef]
    [Google Scholar]
  22. Hart, P. H., Vitti, G. F., Burgess, D. R., Whitty, G. A., Piccoli, D. S. & Hamilton, J. A. ( 1989;). Potential antiinflammatory effects of interleukin 4: suppression of human monocyte tumor necrosis factor alpha, interleukin 1, and prostaglandin E2. Proc Natl Acad Sci U S A 86, 3803–3807.[CrossRef]
    [Google Scholar]
  23. Høiby, N. ( 1975;). Prevalence of mucoid strains of Pseudomonas aeruginosa in bacteriological specimens from patients with cystic fibrosis and patients with other diseases. Acta Pathol Microbiol Scand Suppl 83, 549–552.
    [Google Scholar]
  24. Høiby, N., Krogh Johansen, H., Moser, C., Song, Z., Ciofu, O. & Kharazmi, A. ( 2001;). Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect 3, 23–35.[CrossRef]
    [Google Scholar]
  25. Holloway, B. W. & Morgan, A. F. ( 1986;). Genome organization in Pseudomonas. Annu Rev Microbiol 40, 79–105.[CrossRef]
    [Google Scholar]
  26. Hoyle, B. D. & Costerton, J. W. ( 1991;). Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res 37, 91–105.
    [Google Scholar]
  27. Hughes, K. T. & Mathee, K. ( 1998;). The anti-sigma factors. Annu Rev Microbiol 52, 231–286.[CrossRef]
    [Google Scholar]
  28. Jain-Vora, S., LeVine, A. M., Chroneos, Z., Ross, G. F., Hull, W. M. & Whitsett, J. A. ( 1998;). Interleukin-4 enhances pulmonary clearance of Pseudomonas aeruginosa. Infect Immun 66, 4229–4236.
    [Google Scholar]
  29. Jensen, E. T., Kharazmi, A., Lam, K., Costerton, J. W. & Høiby, N. ( 1990;). Human polymorphonuclear leukocyte response to Pseudomonas aeruginosa grown in biofilms. Infect Immun 58, 2383–2385.
    [Google Scholar]
  30. Johansen, H. K., Espersen, F., Pedersen, S. S., Hougen, H. P., Rygaard, J. & Høiby, N. ( 1993;). Chronic Pseudomonas aeruginosa lung infection in normal and athymic rats. Acta Pathol Microbiol Immunol Scand 101, 207–225.[CrossRef]
    [Google Scholar]
  31. Knutson, C. A. & Jeanes, A. ( 1968;). A new modification of the carbazole analysis: application to heteropolysaccharides. Anal Biochem 24, 470–481.[CrossRef]
    [Google Scholar]
  32. König, B., Friedl, P., Pedersen, S. S. & König, W. ( 1992;). Alginate – its role in neutrophil responses and signal transduction towards mucoid Pseudomonas aeruginosa bacteria. Int Arch Allergy Immunol 99, 98–106.[CrossRef]
    [Google Scholar]
  33. Krieg, D. P., Helmke, R. J., German, V. F. & Mangos, J. A. ( 1988;). Resistance of mucoid Pseudomonas aeruginosa to nonopsonic phagocytosis by alveolar macrophages in vitro. Infect Immun 56, 3173–3179.
    [Google Scholar]
  34. Kronborg, G., Hansen, M. B., Svenson, M., Fomsgaard, A., Høiby, N. & Bendtzen, K. ( 1993;). Cytokines in sputum and serum from patients with cystic fibrosis and chronic Pseudomonas aeruginosa infection as markers of destructive inflammation in the lungs. Pediatr Pulmonol 15, 292–297.[CrossRef]
    [Google Scholar]
  35. Laharrague, P. F., Corberand, J. X., Fillola, G., Gleizes, B. J., Fontanilles, A. M. & Gyrard, E. ( 1984;). In vitro effect of the slime of Pseudomonas aeruginosa on the function of human polymorphonuclear neutrophils. Infect Immun 44, 760–762.
    [Google Scholar]
  36. Lam, J., Chan, R., Lam, K. & Costerton, J. W. ( 1980;). Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun 28, 546–556.
    [Google Scholar]
  37. Lyczak, J. B., Cannon, C. L. & Pier, G. B. ( 2002;). Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15, 194–222.[CrossRef]
    [Google Scholar]
  38. Mai, G. T., Seow, W. K., Pier, G. B., McCormack, J. G. & Thong, Y. H. ( 1993;). Suppression of lymphocyte and neutrophil functions by Pseudomonas aeruginosa mucoid exopolysaccharide (alginate): reversal by physicochemical, alginase, and specific monoclonal antibody treatments. Infect Immun 61, 559–564.
    [Google Scholar]
  39. Marcus, H. & Baker, N. R. ( 1985;). Quantitation of adherence of mucoid and nonmucoid Pseudomonas aeruginosa to hamster tracheal epithelium. Infect Immun 47, 723–729.
    [Google Scholar]
  40. Martin, D. W., Schurr, M. J., Mudd, M. H., Govan, J. R. W., Holloway, B. W. & Deretic, V. ( 1993;). Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci U S A 90, 8377–8381.[CrossRef]
    [Google Scholar]
  41. Mathee, K., Ciofu, O., Sternberg, C. & 9 other authors ( 1999;). Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145, 1349–1357.[CrossRef]
    [Google Scholar]
  42. Mathee, K., Kharazmi, A. & Høiby, N. ( 2002;). Role of exopolysaccharide in biofilm matrix formation, the alginate paradigm. In Molecular Ecology of Biofilms. Edited by R. J. C. McLean & A. W. Decho. Wymondham, UK: Horizon.
  43. Matsumoto, T., Tateda, K., Miyazaki, S., Furuya, N., Ohno, A., Ishii, Y., Hirakata, Y. & Yamaguchi, K. ( 1998;). Effect of interleukin-10 on gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob Agents Chemother 42, 2853–2857.
    [Google Scholar]
  44. Meshulam, T., Obedeanu, N., Merzbach, D. & Sobel, J. D. ( 1984;). Phagocytosis of mucoid and nonmucoid strains of Pseudomonas aeruginosa. Clin Immunol Immunopathol 32, 151–165.[CrossRef]
    [Google Scholar]
  45. Mohr, C. D., Rust, L., Albus, A. M., Iglewski, B. H. & Deretic, V. ( 1990;). Expression patterns of genes encoding elastase and controlling mucoidy: co-ordinate regulation of two virulence factors in Pseudomonas aeruginosa isolates from cystic fibrosis. Mol Microbiol 4, 2103–2110.[CrossRef]
    [Google Scholar]
  46. Moore, K. W., O'Garra, A., de Waal Malefyt, R., Vieira, P. & Mosmann, T. R. ( 1993;). Interleukin-10. Annu Rev Immunol 11, 165–190.[CrossRef]
    [Google Scholar]
  47. Moser, C., Johansen, H. K., Song, Z., Hougen, H. P., Rygaard, J. & Høiby, N. ( 1997;). Chronic Pseudomonas aeruginosa lung infection is more severe in Th2 responding BALB/c mice compared to Th1 responding C3H/HeN mice. Acta Pathol Microbiol Immunol Scand 105, 838–842.[CrossRef]
    [Google Scholar]
  48. Moser, C., Kjaergaard, S., Pressler, T., Kharazmi, A., Koch, C. & Høiby, N. ( 2000;). The immune response to chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is predominantly of the Th2 type. Acta Pathol Microbiol Immunol Scand 108, 329–335.[CrossRef]
    [Google Scholar]
  49. Nichols, W. W., Evans, M. J., Slack, M. P. E. & Walmsley, H. L. ( 1989;). The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa. J Gen Microbiol 135, 1291–1303.
    [Google Scholar]
  50. Noah, T. L., Black, H. R., Cheng, P. W., Wood, R. E. & Leigh, M. W. ( 1997;). Nasal and bronchoalveolar lavage fluid cytokines in early cystic fibrosis. J Infect Dis 175, 638–647.[CrossRef]
    [Google Scholar]
  51. Ohman, D. E., Cryz, S. J. & Iglewski, B. H. ( 1980;). Isolation and characterization of a Pseudomonas aeruginosa PAO mutant that produces altered elastase. J Bacteriol 142, 836–842.
    [Google Scholar]
  52. Oliver, A. M. & Weir, D. M. ( 1985;). The effect of Pseudomonas alginate on rat alveolar macrophage phagocytosis and bacterial opsonization. Clin Exp Immunol 59, 190–196.
    [Google Scholar]
  53. Pedersen, S. S. ( 1992;). Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. Acta Pathol Microbiol Immunol Scand Suppl 28, 1–79.
    [Google Scholar]
  54. Pedersen, S. S., Kharazmi, A., Espersen, F. & Høiby, N. ( 1990;). Pseudomonas aeruginosa alginate in cystic fibrosis sputum and the inflammatory response. Infect Immun 58, 3363–3368.
    [Google Scholar]
  55. Pedersen, S. S., Høiby, N., Espersen, F. & Koch, C. ( 1992;). Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax 47, 6–13.[CrossRef]
    [Google Scholar]
  56. Ramphal, R. & Pier, G. B. ( 1985;). Role of Pseudomonas aeruginosa mucoid exopolysaccharide in adherence to tracheal cells. Infect Immun 47, 1–4.
    [Google Scholar]
  57. Sawa, T., Corry, D. B., Gropper, M. A., Ohara, M., Kurahashi, K. & Wiener-Kronish, J. P. ( 1997;). IL-10 improves lung injury and survival in Pseudomonas aeruginosa pneumonia. J Immunol 159, 2858–2866.
    [Google Scholar]
  58. Schurr, M. J., Martin, D. W., Mudd, M. H. & Deretic, V. ( 1994;). Gene cluster controlling conversion to alginate-overproducing phenotype in Pseudomonas aeruginosa: functional analysis in a heterologous host and role in the instability of mucoidy. J Bacteriol 176, 3375–3382.
    [Google Scholar]
  59. Song, Z., Kharazmi, A., Wu, H., Faber, V., Moser, C., Krogh, H. K., Rygaard, J. & Høiby, N. ( 1998;). Effects of ginseng treatment on neutrophil chemiluminescence and immunoglobulin G subclasses in a rat model of chronic Pseudomonas aeruginosa pneumonia. Clin Diagn Lab Immunol 5, 882–887.
    [Google Scholar]
  60. Stiver, H. G., Zachidniak, K. & Speert, D. P. ( 1988;). Inhibition of polymorphonuclear leukocyte chemotaxis by the mucoid exopolysaccharide of Pseudomonas aeruginosa. Clin Invest Med 11, 247–252.
    [Google Scholar]
  61. Stotland, P. K., Radzioch, D. & Stevenson, M. M. ( 2000;). Mouse models of chronic lung infection with Pseudomonas aeruginosa: models for the study of cystic fibrosis. Pediatr Pulmonol 30, 413–424.[CrossRef]
    [Google Scholar]
  62. Terry, J. M., Pina, S. E. & Mattingly, S. J. ( 1991;). Environmental conditions which influence mucoid conversion in Pseudomonas aeruginosa PAO1. Infect Immun 59, 471–477.
    [Google Scholar]
  63. Yu, H., Boucher, J. C, Hibler, N. S. & Deretic, V. ( 1996;). Virulence properties of Pseudomonas aeruginosa lacking the extreme-stress sigma factor AlgU (sigmaE). Infect Immun 64, 2774–2781.
    [Google Scholar]
  64. Yu, H., Hanes, M., Chrisp, C. E., Boucher, J. C. & Deretic, V. ( 1998;). Microbial pathogenesis in cystic fibrosis: pulmonary clearance of mucoid Pseudomonas aeruginosa and inflammation in a mouse model of repeated respiratory challenge. Infect Immun 66, 280–288.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05122-0
Loading
/content/journal/jmm/10.1099/jmm.0.05122-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error