1887

Abstract

The diversity within the genetic and antibiotic resistance profiles and the production of virulence-associated enzymic activities of 66 strains collected from a university hospital in Japan in 2005 were studied. PFGE analysis of the collection indicated that a variety of profiles were present. MLST analysis of nine selected strains showed that four of the six sequence types identified were novel. These results indicated that there was a high degree of genetic diversity between the strains and that strains isolated in Japan might be genetically divergent from those in Europe. The majority of strains were resistant to piperacillin (93.9 %), ceftazidime (84.8 %), imipenem (100 %), aztreonam (98.5 %), gentamicin (81.8 %), amikacin (87.9 %), ciprofloxacin (84.8 %), tetracycline (97.0 %) and chloramphenicol (78.8 %), although levofloxacin was effective against 77.3 % of the strains. Most of the strains showed multidrug resistance and carried the class 1 integron, but no strain showed transmission of antibiotic resistance by conjugation. Although haemolytic activity was not detected in any of the strains, protease and lipase activities were detected in 86.4 % and 31.8 % of the strains, respectively.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.051151-0
2013-04-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/4/565.html?itemId=/content/journal/jmm/10.1099/jmm.0.051151-0&mimeType=html&fmt=ahah

References

  1. Alonso A., Martínez J. L.. ( 1997;). Multiple antibiotic resistance in Stenotrophomonas maltophilia. . Antimicrob Agents Chemother 41:, 1140–1142.[PubMed]
    [Google Scholar]
  2. Araoka H., Baba M., Yoneyama A.. ( 2010;). Risk factors for mortality among patients with Stenotrophomonas maltophilia bacteremia in Tokyo, Japan, 1996–2009. . Eur J Clin Microbiol Infect Dis 29:, 605–608. [CrossRef][PubMed]
    [Google Scholar]
  3. Chang L. L., Chen H. F., Chang C. Y., Lee T. M., Wu W. J.. ( 2004;). Contribution of integrons, and SmeABC and SmeDEF efflux pumps to multidrug resistance in clinical isolates of Stenotrophomonas maltophilia. . J Antimicrob Chemother 53:, 518–521. [CrossRef][PubMed]
    [Google Scholar]
  4. CLSI ( 2007;). Performance Standards for Antimicrobial Susceptibility Testing; fSeventeenth Informational Supplement. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  5. Coenye T., Vanlaere E., LiPuma J. J., Vandamme P.. ( 2004;). Identification of genomic groups in the genus Stenotrophomonas using gyrB RFLP analysis. . FEMS Immunol Med Microbiol 40:, 181–185. [CrossRef][PubMed]
    [Google Scholar]
  6. Crossman L. C., Gould V. C., Dow J. M., Vernikos G. S., Okazaki A., Sebaihia M., Saunders D., Arrowsmith C., Carver T.. & other authors ( 2008;). The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. . Genome Biol 9:, R74. [CrossRef][PubMed]
    [Google Scholar]
  7. Datta N., Hedges R. W.. ( 1972;). Host ranges of R factors. . J Gen Microbiol 70:, 453–460. [CrossRef][PubMed]
    [Google Scholar]
  8. Denton M., Kerr K. G.. ( 1998;). Microbiological and clinical aspects of infection associated with Stenotrophomonas maltophilia. . Clin Microbiol Rev 11:, 57–80.[PubMed]
    [Google Scholar]
  9. Garciá de Viedma D., Marín M., Cercenado E., Alonso R., Rodríguez-Créixems M., Bouza E.. ( 1999;). Evidence of nosocomial Stenotrophomonas maltophilia cross-infection in a neonatology unit analyzed by three molecular typing methods. . Infect Control Hosp Epidemiol 20:, 816–820. [CrossRef][PubMed]
    [Google Scholar]
  10. Gould V. C., Okazaki A., Avison M. B.. ( 2006;). Beta-lactam resistance and beta-lactamase expression in clinical Stenotrophomonas maltophilia isolates having defined phylogenetic relationships. . J Antimicrob Chemother 57:, 199–203. [CrossRef][PubMed]
    [Google Scholar]
  11. Hauben L., Vauterin L., Moore E. R., Hoste B., Swings J.. ( 1999;). Genomic diversity of the genus Stenotrophomonas. . Int J Syst Bacteriol 49:, 1749–1760. [CrossRef][PubMed]
    [Google Scholar]
  12. Kaiser S., Biehler K., Jonas D.. ( 2009;). A Stenotrophomonas maltophilia multilocus sequence typing scheme for inferring population structure. . J Bacteriol 191:, 2934–2943. [CrossRef][PubMed]
    [Google Scholar]
  13. Lambert T., Ploy M. C., Denis F., Courvalin P.. ( 1999;). Characterization of the chromosomal aac(6′)-Iz gene of Stenotrophomonas maltophilia. . Antimicrob Agents Chemother 43:, 2366–2371.[PubMed]
    [Google Scholar]
  14. Liaw S. J., Teng L. J., Hsueh P. R., Ho S. W., Luh K. T.. ( 2002;). In vitro activities of antimicrobial combinations against clinical isolates of Stenotrophomonas maltophilia. . J Formos Med Assoc 101:, 495–501.[PubMed]
    [Google Scholar]
  15. Liaw S. J., Lee Y. L., Hsueh P. R.. ( 2010;). Multidrug resistance in clinical isolates of Stenotrophomonas maltophilia: roles of integrons, efflux pumps, phosphoglucomutase (SpgM), and melanin and biofilm formation. . Int J Antimicrob Agents 35:, 126–130. [CrossRef][PubMed]
    [Google Scholar]
  16. Looney W. J., Narita M., Mühlemann K.. ( 2009;). Stenotrophomonas maltophilia: an emerging opportunist human pathogen. . Lancet Infect Dis 9:, 312–323. [CrossRef][PubMed]
    [Google Scholar]
  17. Nicodemo A. C., Paez J. I.. ( 2007;). Antimicrobial therapy for Stenotrophomonas maltophilia infections. . Eur J Clin Microbiol Infect Dis 26:, 229–237. [CrossRef][PubMed]
    [Google Scholar]
  18. Okazaki A., Avison M. B.. ( 2007;). Aph(3′)-IIc, an aminoglycoside resistance determinant from Stenotrophomonas maltophilia. . Antimicrob Agents Chemother 51:, 359–360. [CrossRef][PubMed]
    [Google Scholar]
  19. Okazaki A., Avison M. B.. ( 2008;). Induction of L1 and L2 beta-lactamase production in Stenotrophomonas maltophilia is dependent on an AmpR-type regulator. . Antimicrob Agents Chemother 52:, 1525–1528. [CrossRef][PubMed]
    [Google Scholar]
  20. Ploy M. C., Denis F., Courvalin P., Lambert T.. ( 2000;). Molecular characterization of integrons in Acinetobacter baumannii: description of a hybrid class 2 integron. . Antimicrob Agents Chemother 44:, 2684–2688. [CrossRef][PubMed]
    [Google Scholar]
  21. Tan C. K., Liaw S. J., Yu C. J., Teng L. J., Hsueh P. R.. ( 2008;). Extensively drug-resistant Stenotrophomonas maltophilia in a tertiary care hospital in Taiwan: microbiologic characteristics, clinical features, and outcomes. . Diagn Microbiol Infect Dis 60:, 205–210. [CrossRef][PubMed]
    [Google Scholar]
  22. Valdezate S., Vindel A., Martín-Dávila P., Del Saz B. S., Baquero F., Cantón R.. ( 2004;). High genetic diversity among Stenotrophomonas maltophilia strains despite their originating at a single hospital. . J Clin Microbiol 42:, 693–699. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.051151-0
Loading
/content/journal/jmm/10.1099/jmm.0.051151-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error