1887

Abstract

The fungicide fludioxonil is widely used in agriculture. Residua of this fungicide are occasionally detected in fruits and can therefore be ingested by humans. The human fungal pathogen expresses the target of fludioxonil, Nik1p, a type III histidine kinase involved in stress response. Inhibition of yeast and hyphae growth was hardly observable after treatment of SC5314 with fludioxonil. As a side effect, however, we observed a concentration-dependent induction of the expression of the genes and , encoding ATP-binding cassette (ABC) transporters. This was independent of the presence of the target of fludioxonil as induction was also observed in a Δ deletion mutant. Deletion of the gene aggravated the inhibition of germ tube formation by fludioxonil, indicating that, in the wild-type, the fungicide was discharged from the cell by Cdr1p. Cdr1p is also known as a resistance factor of against the commonly used antimycotic fluconazole. Thus, the effect of concurrent exposure to fludioxonil and known cargoes of ABC transporters on their extrusion and the growth of was examined. Pre-incubation with fludioxonil decreased the export rate of rhodamine 6G. The resistance to fluconazole was increased by fludioxonil, independently of Nik1p. Therefore, exposure of to fludioxonil may lead to increased resistance to fluconazole treatment.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.050963-0
2012-12-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/12/1696.html?itemId=/content/journal/jmm/10.1099/jmm.0.050963-0&mimeType=html&fmt=ahah

References

  1. Alex L. A., Korch C., Selitrennikoff C. P., Simon M. I.. ( 1998;). COS1, a two-component histidine kinase that is involved in hyphal development in the opportunistic pathogen Candida albicans. . Proc Natl Acad Sci U S A 95:, 7069–7073. [CrossRef][PubMed]
    [Google Scholar]
  2. Arnaud M. B., Inglis D. O., Skrzypek M. S., Binkley J., Shah P., Binkley G., Miyasato S. R., Simison M., Sherlock G., . ( 2012;). Candida Genome Database [accessed 17 April 2012]. http://www.candidagenome.org/
  3. Bolstad B. M., Irizarry R. A., Astrand M., Speed T. P.. ( 2003;). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. . Bioinformatics 19:, 185–193. [CrossRef][PubMed]
    [Google Scholar]
  4. Buschart A., Gremmer K., El-Mowafy M., van den Heuvel J., Mueller P. P., Bilitewski U.. ( 2012;). A novel functional assay for fungal histidine kinases group III reveals the role of HAMP domains for fungicide sensitivity. . J Biotechnol 157:, 268–277. [CrossRef][PubMed]
    [Google Scholar]
  5. Calderone R. A., Fonzi W. A.. ( 2001;). Virulence factors of Candida albicans. . Trends Microbiol 9:, 327–335. [CrossRef][PubMed]
    [Google Scholar]
  6. Chauhan N., Calderone R.. ( 2008;). Two-component signal transduction proteins as potential drug targets in medically important fungi. . Infect Immun 76:, 4795–4803. [CrossRef][PubMed]
    [Google Scholar]
  7. Chauhan N., Kruppa M., Calderone R.. ( 2007;). The Ssk1p response regulator and Chk1p histidine kinase mutants of Candida albicans are hypersensitive to fluconazole and voriconazole. . Antimicrob Agents Chemother 51:, 3747–3751. [CrossRef][PubMed]
    [Google Scholar]
  8. Coste A. T., Karababa M., Ischer F., Bille J., Sanglard D.. ( 2004;). TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. . Eukaryot Cell 3:, 1639–1652. [CrossRef][PubMed]
    [Google Scholar]
  9. Coste A., Turner V., Ischer F., Morschhäuser J., Forche A., Selmecki A., Berman J., Bille J., Sanglard D.. ( 2006;). A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. . Genetics 172:, 2139–2156. [CrossRef][PubMed]
    [Google Scholar]
  10. Dogra S., Krishnamurthy S., Gupta V., Dixit B. L., Gupta C. M., Sanglard D., Prasad R.. ( 1999;). Asymmetric distribution of phosphatidylethanolamine in C. albicans: possible mediation by CDR1, a multidrug transporter belonging to ATP binding cassette (ABC) superfamily. . Yeast 15:, 111–121. [CrossRef][PubMed]
    [Google Scholar]
  11. EFR ( 2012; ). Fludioxonil; tolerances for residues. Electronic Code of Federal Regulations. Title 40: Protection of Environment, Part 180 – Tolerances and exemptions for pesticide chemical residues in food, Subpart C – Specific Tolerances, section §180.516. . http://www.gpo.gov/fdsys/
    [Google Scholar]
  12. EUCAST ( 2008;). EUCAST definitive document EDef 7.1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts. . Clin Microbiol Infect 14:, 398–405. [CrossRef][PubMed]
    [Google Scholar]
  13. European Commission ( 2011;). Commission Regulation (EU) No 813/2011 of 11 August 2011 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for acequinocyl, emamectin benzoate, ethametsulfuron-methyl, flubendiamide, fludioxonil, kresoxim-methyl, methoxyfenozide, novaluron, thiacloprid and trifloxystrobin in or on certain products. . Official Journal of the European Union 54:, L208/23.
    [Google Scholar]
  14. Fournier P., Schwebel C., Maubon D., Vesin A., Lebeau B., Foroni L., Hamidfar-Roy R., Cornet M., Timsit J. F., Pelloux H.. ( 2011;). Antifungal use influences Candida species distribution and susceptibility in the intensive care unit. . J Antimicrob Chemother 66:, 2880–2886. [CrossRef][PubMed]
    [Google Scholar]
  15. Gaur M., Choudhury D., Prasad R.. ( 2005;). Complete inventory of ABC proteins in human pathogenic yeast, Candida albicans. . J Mol Microbiol Biotechnol 9:, 3–15. [CrossRef][PubMed]
    [Google Scholar]
  16. Gentleman R. C., Carey V. J., Bates D. M., Bolstad B., Dettling M., Dudoit S., Ellis B., Gautier L., Ge Y.. & other authors ( 2004;). Bioconductor: open software development for computational biology and bioinformatics. . Genome Biol 5:, R80. [CrossRef][PubMed]
    [Google Scholar]
  17. Gillum A. M., Tsay E. Y., Kirsch D. R.. ( 1984;). Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. . Mol Gen Genet 198:, 179–182. [CrossRef][PubMed]
    [Google Scholar]
  18. Homann O. R., Dea J., Noble S. M., Johnson A. D.. ( 2009;). A phenotypic profile of the Candida albicans regulatory network. . PLoS Genet 5:, e1000783. [CrossRef][PubMed]
    [Google Scholar]
  19. Inglis D. O., Arnaud M. B., Binkley J., Shah P., Skrzypek M. S., Wymore F., Binkley G., Miyasato S. R., Simison M., Sherlock G.. ( 2012;). The Candida genome database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata. . Nucleic Acids Res 40: (Database issue), D667–D674. [CrossRef][PubMed]
    [Google Scholar]
  20. Krishnamurthy S., Gupta V., Snehlata P., Prasad R.. ( 1998a;). Characterisation of human steroid hormone transport mediated by Cdr1p, a multidrug transporter of Candida albicans, belonging to the ATP binding cassette super family. . FEMS Microbiol Lett 158:, 69–74. [CrossRef][PubMed]
    [Google Scholar]
  21. Krishnamurthy S., Gupta V., Prasad R., Panwar S. L., Prasad R.. ( 1998b;). Expression of CDR1, a multidrug resistance gene of Candida albicans: transcriptional activation by heat shock, drugs and human steroid hormones. . FEMS Microbiol Lett 160:, 191–197. [CrossRef][PubMed]
    [Google Scholar]
  22. Liu T. T., Lee R. E. B., Barker K. S., Lee R. E., Wei L., Homayouni R., Rogers P. D.. ( 2005;). Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. . Antimicrob Agents Chemother 49:, 2226–2236. [CrossRef][PubMed]
    [Google Scholar]
  23. Maesaki S., Marichal P., Vanden Bossche H., Sanglard D., Kohno S.. ( 1999;). Rhodamine 6G efflux for the detection of CDR1-overexpressing azole-resistant Candida albicans strains. . J Antimicrob Chemother 44:, 27–31. [CrossRef][PubMed]
    [Google Scholar]
  24. Nobile C. J., Mitchell A. P.. ( 2009;). Large-scale gene disruption using the UAU1 cassette. . Methods Mol Biol 499:, 175–194. [CrossRef][PubMed]
    [Google Scholar]
  25. Ochiai N., Fujimura M., Oshima M., Motoyama T., Ichiishi A., Yamada-Okabe H., Yamaguchi I.. ( 2002;). Effects of iprodione and fludioxonil on glycerol synthesis and hyphal development in Candida albicans. . Biosci Biotechnol Biochem 66:, 2209–2215. [CrossRef][PubMed]
    [Google Scholar]
  26. Okada A., Banno S., Ichiishi A., Rimura M., Yamaguchi I., Fujimura M.. ( 2005;). Pyrrolnitrin interferes with osmotic signal transduction in Neurospora crassa. . J Pestic Sci 30:, 378–383. [CrossRef]
    [Google Scholar]
  27. Pfaller M. A., Diekema D. J.. ( 2007;). Epidemiology of invasive candidiasis: a persistent public health problem. . Clin Microbiol Rev 20:, 133–163. [CrossRef][PubMed]
    [Google Scholar]
  28. Pillonel C., Meyer T.. ( 1997;). Effect of phenylpyrroles on glycerol accumulation and protein kinase activity of Neurospora crassa. . Pestic Sci 49:, 229–236. [CrossRef]
    [Google Scholar]
  29. Prasad R., De Wergifosse P., Goffeau A., Balzi E.. ( 1995;). Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. . Curr Genet 27:, 320–329. [CrossRef][PubMed]
    [Google Scholar]
  30. Rex J. H., Rinaldi M. G., Pfaller M. A.. ( 1995;). Resistance of Candida species to fluconazole. . Antimicrob Agents Chemother 39:, 1–8. [CrossRef][PubMed]
    [Google Scholar]
  31. Sanglard D., Kuchler K., Ischer F., Pagani J. L., Monod M., Bille J.. ( 1995;). Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. . Antimicrob Agents Chemother 39:, 2378–2386. [CrossRef][PubMed]
    [Google Scholar]
  32. Sanglard D., Ischer F., Monod M., Bille J.. ( 1996;). Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. . Antimicrob Agents Chemother 40:, 2300–2305.[PubMed]
    [Google Scholar]
  33. Sanglard D., Ischer F., Monod M., Bille J.. ( 1997;). Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. . Microbiology 143:, 405–416. [CrossRef][PubMed]
    [Google Scholar]
  34. Sanglard D., Odds F. C.. ( 2002;). Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. . Lancet Infect Dis 2:, 73–85. [CrossRef][PubMed]
    [Google Scholar]
  35. Schmidt M., Barker S., Essmann M., Larsen B.. ( 2008;). Effect of commonly used herbicides on the virulence factor CDR1 in Candida albicans. . Environ Toxicol Chem 27:, 2346–2351. [CrossRef][PubMed]
    [Google Scholar]
  36. Shukla S., Rai V., Saini P., Banerjee D., Menon A. K., Prasad R.. ( 2007;). Candida drug resistance protein 1, a major multidrug ATP binding cassette transporter of Candida albicans, translocates fluorescent phospholipids in a reconstituted system. . Biochemistry 46:, 12081–12090. [CrossRef][PubMed]
    [Google Scholar]
  37. Shukla S., Yadav V., Mukhopadhyay G., Prasad R.. ( 2011;). Ncb2 is involved in activated transcription of CDR1 in azole-resistant clinical isolates of Candida albicans. . Eukaryot Cell 10:, 1357–1366. [CrossRef][PubMed]
    [Google Scholar]
  38. Siikala E., Rautemaa R., Richardson M., Saxen H., Bowyer P., Sanglard D.. ( 2010;). Persistent Candida albicans colonization and molecular mechanisms of azole resistance in autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED) patients. . J Antimicrob Chemother 65:, 2505–2513. [CrossRef][PubMed]
    [Google Scholar]
  39. Sipos G., Kuchler K.. ( 2006;). Fungal ATP-binding cassette (ABC) transporters in drug resistance & detoxification. . Curr Drug Targets 7:, 471–481. [CrossRef][PubMed]
    [Google Scholar]
  40. Smriti K., Krishnamurthy S., Dixit B. L., Gupta C. M., Milewski S., Prasad R.. ( 2002;). ABC transporters Cdr1p, Cdr2p and Cdr3p of a human pathogen Candida albicans are general phospholipid translocators. . Yeast 19:, 303–318. [CrossRef][PubMed]
    [Google Scholar]
  41. Smyth G. K.. ( 2004;). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. . Stat Appl Genet Mol Biol 3:. [CrossRef]
    [Google Scholar]
  42. Smyth G. K., Speed T.. ( 2003;). Normalization of cDNA microarray data. . Methods 31:, 265–273. [CrossRef][PubMed]
    [Google Scholar]
  43. Staab J. F., Ferrer C. A., Sundstrom P.. ( 1996;). Developmental expression of a tandemly repeated, proline- and glutamine-rich amino acid motif on hyphal surfaces on Candida albicans. . J Biol Chem 271:, 6298–6305. [CrossRef][PubMed]
    [Google Scholar]
  44. Staab J. F., Sundstrom P.. ( 1998;). Genetic organization and sequence analysis of the hypha-specific cell wall protein gene HWP1 of Candida albicans. . Yeast 14:, 681–686. [CrossRef][PubMed]
    [Google Scholar]
  45. Tanabe K., Lamping E., Nagi M., Okawada A., Holmes A. R., Miyazaki Y., Cannon R. D., Monk B. C., Niimi M.. ( 2011;). Chimeras of Candida albicans Cdr1p and Cdr2p reveal features of pleiotropic drug resistance transporter structure and function. . Mol Microbiol 82:, 416–433. [CrossRef][PubMed]
    [Google Scholar]
  46. Tsao S., Rahkhoodaee F., Raymond M.. ( 2009;). Relative contributions of the Candida albicans ABC transporters Cdr1p and Cdr2p to clinical azole resistance. . Antimicrob Agents Chemother 53:, 1344–1352. [CrossRef][PubMed]
    [Google Scholar]
  47. Wesolowski J., Hassan R. Y. A., Reinhardt K., Hodde S., Bilitewski U.. ( 2010;). Antifungal compounds redirect metabolic pathways in yeasts: metabolites as indicators of modes of action. . J Appl Microbiol 108:, 462–471. [CrossRef][PubMed]
    [Google Scholar]
  48. Wirsching S., Michel S., Morschhäuser J.. ( 2000;). Targeted gene disruption in Candida albicans wild-type strains: the role of the MDR1 gene in fluconazole resistance of clinical Candida albicans isolates. . Mol Microbiol 36:, 856–865. [CrossRef][PubMed]
    [Google Scholar]
  49. Yamada-Okabe T., Mio T., Ono N., Kashima Y., Matsui M., Arisawa M., Yamada-Okabe H.. ( 1999;). Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans. . J Bacteriol 181:, 7243–7247.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.050963-0
Loading
/content/journal/jmm/10.1099/jmm.0.050963-0
Loading

Data & Media loading...

Supplements

Supplementary Table S1 

PDF

Supplementary Table S2 

EXCEL

Supplementary Table S3 

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error