1887

Abstract

The contribution of quorum sensing in some phenotypic and pathogenic characteristics of was studied. The production of acylhomoserine lactones (AHL) by planktonic cultures of eight clinical and reference strains of was evaluated using two biosensors. The adhesion of the bacteria on a surface (Biofilm Ring Test ®, BFRT), their capacity to develop a biofilm (crystal violet staining method, CVSM), their sensitivity to tobramycin and their secretion of proteases or of rhamnolipids were also measured. The production and the release of AHL widely varied among the eight strains. An analysis of the extracts by TLC showed that 3-oxo-C-HSL, 3-oxo-C-HSL and 3-oxo-C-HSL were released by the five strains producing the highest amount of C -HSL. The genes and involved in the synthesis and response to 3-oxo-C-HSL were detected in the genomes of all strains. Two clinical strains had deletions in the gene leading to truncation of the protein. One subpopulation of the PAO1 strain had a major deletion (98 bp) of the gene Strains with significant mutations of secreted the lowest amount of AHL, probably due to deficiencies in the self-induction and amplification of the synthesis of the lactone. These strains formed a biofilm with low biomass. C-HSL production also differed among the strains and was correlated with rhamnolipid production and biofilm formation. Whereas the production of AHL varied among strains, few correlations were observed with their phenotypic properties except with their ability to form a biofilm.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.050807-0
2013-07-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/7/951.html?itemId=/content/journal/jmm/10.1099/jmm.0.050807-0&mimeType=html&fmt=ahah

References

  1. Bottomley M. J., Muraglia E., Bazzo R., Carfì A.. ( 2007;). Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. . J Biol Chem 282:, 13592–13600. [CrossRef][PubMed]
    [Google Scholar]
  2. Cha C., Gao P., Chen Y. C., Shaw P. D., Farrand S. K.. ( 1998;). Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. . Mol Plant Microbe Interact 11:, 1119–1129. [CrossRef][PubMed]
    [Google Scholar]
  3. Cheng K., Smyth R. L., Govan J. R., Doherty C., Winstanley C., Denning N., Heaf D. P., van Saene H., Hart C. A.. ( 1996;). Spread of beta-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. . Lancet 348:, 639–642. [CrossRef][PubMed]
    [Google Scholar]
  4. Clark D. J., Maaløe O.. ( 1967;). DNA replication and the division cycle in Escherichia coli.. J Mol Biol 23:, 99–112. [CrossRef]
    [Google Scholar]
  5. Erickson D. L., Endersby R., Kirkham A., Stuber K., Vollman D. D., Rabin H. R., Mitchell I., Storey D. G.. ( 2002;). Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis. . Infect Immun 70:, 1783–1790. [CrossRef][PubMed]
    [Google Scholar]
  6. Essar D. W., Eberly L., Hadero A., Crawford I. P.. ( 1990;). Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. . J Bacteriol 172:, 884–900.[PubMed]
    [Google Scholar]
  7. Fridkin S. K., Steward C. D., Edwards J. R., Pryor E. R., McGowan J. E. Jr, Archibald L. K., Gaynes R. P., Tenover F. C.. ( 1999;). Surveillance of antimicrobial use and antimicrobial resistance in United States hospitals: project ICARE phase 2. Project Intensive Care Antimicrobial Resistance Epidemiology (ICARE) hospitals. . Clin Infect Dis 29:, 245–252. [CrossRef][PubMed]
    [Google Scholar]
  8. Fuqua W. C., Winans S. C., Greenberg E. P.. ( 1994;). Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. . J Bacteriol 176:, 269–275.[PubMed]
    [Google Scholar]
  9. Geisenberger O., Givskov M., Riedel K., Høiby N., Tümmler B., Eberl L.. ( 2000;). Production of N-acyl-l-homoserine lactones by P. aeruginosa isolates from chronic lung infections associated with cystic fibrosis. . FEMS Microbiol Lett 184:, 273–278.[PubMed]
    [Google Scholar]
  10. Hauser A. R., Jain M., Bar-Meir M., McColley S. A.. ( 2011;). Clinical significance of microbial infection and adaptation in cystic fibrosis. . Clin Microbiol Rev 24:, 29–70. [CrossRef][PubMed]
    [Google Scholar]
  11. Høiby N., Ciofu O., Bjarnsholt T.. ( 2010;). Pseudomonas aeruginosa biofilms in cystic fibrosis. . Future Microbiol 5:, 1663–1674. [CrossRef][PubMed]
    [Google Scholar]
  12. Klockgether J., Munder A., Neugebauer J., Davenport C. F., Stanke F., Larbig K. D., Heeb S., Schöck U., Pohl T. M. et al. ( 2010;). Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains. . J Bacteriol 192:, 1113–1121. [CrossRef][PubMed]
    [Google Scholar]
  13. Leid J. G.. ( 2009;). Bacterial biofilms resist key host defenses. . Microbe 4:, 66–70.
    [Google Scholar]
  14. Mah T. F., Pitts B., Pellock B., Walker G. C., Stewart P. S., O’Toole G. A.. ( 2003;). A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. . Nature 426:, 306–310. [CrossRef][PubMed]
    [Google Scholar]
  15. Middleton B., Rodgers H. C., Cámara M., Knox A. J., Williams P., Hardman A.. ( 2002;). Direct detection of N-acylhomoserine lactones in cystic fibrosis sputum. . FEMS Microbiol Lett 207:, 1–7. [CrossRef][PubMed]
    [Google Scholar]
  16. Minagawa S., Inami H., Kato T., Sawada S., Yasuki T., Miyairi S., Horikawa M., Okuda J., Gotoh N.. ( 2012;). RND type efflux pump system MexAB-OprM of Pseudomonas aeruginosa selects bacterial languages, 3-oxo-acyl-homoserine lactones, for cell-to-cell communication. . BMC Microbiol 12:, 70. [CrossRef][PubMed]
    [Google Scholar]
  17. Moskowitz S. M., Foster J. M., Emerson J., Burns J. L.. ( 2004;). Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. . J Clin Microbiol 42:, 1915–1922. [CrossRef][PubMed]
    [Google Scholar]
  18. Mulcahy H., Charron-Mazenod L., Lewenza S.. ( 2008;). Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. . PLoS Pathog 4:, e1000213. [CrossRef][PubMed]
    [Google Scholar]
  19. Nagant C., Tré-Hardy M., Devleeschouwer M., Dehaye J. P.. ( 2010a;). Study of the initial phase of biofilm formation using a biofomic approach. . J Microbiol Methods 82:, 243–248. [CrossRef][PubMed]
    [Google Scholar]
  20. Nagant C., Tré-Hardy M., El-Ouaaliti M., Savage P., Devleeschouwer M., Dehaye J. P.. ( 2010b;). Interaction between tobramycin and CSA-13 on clinical isolates of Pseudomonas aeruginosa in a model of young and mature biofilms. . Appl Microbiol Biotechnol 88:, 251–263. [CrossRef][PubMed]
    [Google Scholar]
  21. Ochsner U. A., Reiser J.. ( 1995;). Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. . Proc Natl Acad Sci U S A 92:, 6424–6428. [CrossRef][PubMed]
    [Google Scholar]
  22. Parsek M. R., Greenberg E. P.. ( 2005;). Sociomicrobiology: the connections between quorum sensing and biofilms. . Trends Microbiol 13:, 27–33. [CrossRef][PubMed]
    [Google Scholar]
  23. Pizzo P. A.. ( 1999;). Fever in immunocompromised patients. . N Engl J Med 341:, 893–900. [CrossRef][PubMed]
    [Google Scholar]
  24. Riedel K., Hentzer M., Geisenberger O., Huber B., Steidle A., Wu H., Høiby N., Givskov M., Molin S., Eberl L.. ( 2001;). N-Acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. . Microbiology 147:, 3249–3262.[PubMed]
    [Google Scholar]
  25. Ruimy R., Andremont A.. ( 2004;). Quorum-sensing chez Pseudomonas aeruginosa: mécanisme moléculaire, impact clinique, et inhibition. . Réanimation 13:, 176–184. [CrossRef]
    [Google Scholar]
  26. Sandoz K. M., Mitzimberg S. M., Schuster M.. ( 2007;). Social cheating in Pseudomonas aeruginosa quorum sensing. . Proc Natl Acad Sci U S A 104:, 15876–15881. [CrossRef][PubMed]
    [Google Scholar]
  27. Schaber J. A., Carty N. L., McDonald N. A., Graham E. D., Cheluvappa R., Griswold J. A., Hamood A. N.. ( 2004;). Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa.. J Med Microbiol 53:, 841–853. [CrossRef][PubMed]
    [Google Scholar]
  28. Shaw P. D., Ping G., Daly S. L., Cha C., Cronan J. E. Jr, Rinehart K. L., Farrand S. K.. ( 1997;). Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. . Proc Natl Acad Sci U S A 94:, 6036–6041. [CrossRef][PubMed]
    [Google Scholar]
  29. Singh P. K., Schaefer A. L., Parsek M. R., Moninger T. O., Welsh M. J., Greenberg E. P.. ( 2000;). Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. . Nature 407:, 762–764. [CrossRef][PubMed]
    [Google Scholar]
  30. Smith E. E., Buckley D. G., Wu Z., Saenphimmachak C., Hoffman L. R., D’Argenio D. A., Miller S. I., Ramsey B. W., Speert D. P. et al. ( 2006;). Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. . Proc Natl Acad Sci U S A 103:, 8487–8492. [CrossRef][PubMed]
    [Google Scholar]
  31. Vandeputte O. M., Kiendrebeogo M., Rasamiravaka T., Stévigny C., Duez P., Rajaonson S., Diallo B., Mol A., Baucher M., El Jaziri M.. ( 2011;). The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. . Microbiology 157:, 2120–2132. [CrossRef][PubMed]
    [Google Scholar]
  32. Wilhelm S., Gdynia A., Tielen P., Rosenau F., Jaeger K. E.. ( 2007;). The autotransporter esterase EstA of Pseudomonas aeruginosa is required for rhamnolipid production, cell motility, and biofilm formation. . J Bacteriol 189:, 6695–6703. [CrossRef][PubMed]
    [Google Scholar]
  33. Yong Y. C., Zhong J. J.. ( 2009;). A genetically engineered whole-cell pigment-based bacterial biosensing system for quantification of N-butyryl homoserine lactone quorum sensing signal. . Biosens Bioelectron 25:, 41–47. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.050807-0
Loading
/content/journal/jmm/10.1099/jmm.0.050807-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error