1887

Abstract

The protein NapA has been identified as a homologue of the protein Dps. It is shown in this study that, like Dps, NapA is produced maximally in stationary phase cells and contributes to the ability of to survive under oxidative stress conditions. Moreover, NapA co-localizes with the nuclear material, suggesting that it can interact with DNA . Furthermore, it is demonstrated that repression of NapA production by iron starvation was not so pronounced in a mutant, suggesting that the ferric uptake regulator (Fur) is involved in regulation, and a potential box by which this control could be mediated is identified. This finding is consistent with the regulation of iron-binding proteins by Fur and also the modulation of Fur during oxidative stress, thus allowing NapA levels to be increased in the environmental conditions under which its ability to protect DNA from attack by toxic free radicals is most beneficial to the cell.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05070-0
2003-06-01
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/6/JM520604.html?itemId=/content/journal/jmm/10.1099/jmm.0.05070-0&mimeType=html&fmt=ahah

References

  1. Abdul-Tehrani, H., Hudson, A. J., Chang, Y. S., Timms, A. R., Hawkins, C., Williams, J. M., Harrison, P. M., Guest, J. R. & Andrews, S. C. ( 1999;). Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur mutants are iron deficient. J Bacteriol 181, 1415–1428.
    [Google Scholar]
  2. Alm, R. A., Ling, L. S., Moir, D. T. & 20 other authors ( 1999;). Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176–180.[CrossRef]
    [Google Scholar]
  3. Almiron, M., Link, A. J., Furlong, D. & Kolter, R. ( 1992;). A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6, 2646–2654.[CrossRef]
    [Google Scholar]
  4. Atherton, J. C. ( 1997;). Molecular methods for detecting ulcerogenic strains of H. pylori. In Methods in Molecular Medicine: Helicobacter pylori Protocols, pp. 133–145. Edited by C. L. Clayton & H. L. T. Mobley. Totowa, NJ: Humana Press.
  5. Azam, T. A., Hiraga, S. & Ishihama, A. ( 2000;). Two types of localization of the DNA-binding proteins within the Escherichia coli nucleoid. Genes Cells 5, 613–626.[CrossRef]
    [Google Scholar]
  6. Bereswill, S., Waidner, U., Odenbreit, S., Lichte, F., Fassbinder, F., Bode, G. & Kist, M. ( 1998;). Structural, functional and mutational analysis of the pfr gene encoding a ferritin from Helicobacter pylori. Microbiology 144, 2505–2516.[CrossRef]
    [Google Scholar]
  7. Bereswill, S., Greiner, S., van Vliet, A. H. M., Waidner, B., Fassbinder, F., Schiltz, E., Kusters, J. G. & Kist, M. ( 2000;). Regulation of ferritin-mediated cytoplasmic iron storage by the ferric uptake regulator homolog (Fur) of Helicobacter pylori. J Bacteriol 182, 5948–5953.[CrossRef]
    [Google Scholar]
  8. Bijlsma, J. J. E., Sparrius, M., Smeets, L. C., Namavar, F., Vandenbroucke-Grauls, C. M. J. E. & Kusters, J. G. ( 2000;). The neutrophil activating protein (NAP) of H.pylori is a DNA binding protein and essential for growth at pH 5. Gastroenterology 118 (Suppl. 2), A729. A729.
    [Google Scholar]
  9. Bijlsma, J. J. E., Waidner, B., van Vliet, A. H. M. & 7 other authors ( 2002;). The Helicobacter pylori homologue of the ferric uptake regulator is involved in acid resistance. Infect Immun 70, 606–611.[CrossRef]
    [Google Scholar]
  10. Blaser, M. J. ( 1992;). Hypotheses on the pathogenesis and natural history of Helicobacter pylori-induced inflammation. Gastroenterology 102, 720–727.
    [Google Scholar]
  11. Braun, V. ( 2001;). Iron uptake mechanisms and their regulation in pathogenic bacteria. Int J Med Microbiol 291, 67–79.[CrossRef]
    [Google Scholar]
  12. Delany, I., Pacheco, A. B. F., Spohn, G., Rappuoli, R. & Scarlato, V. ( 2001;). Iron-dependent transcription of the frpB gene of Helicobacter pylori is controlled by the Fur repressor protein. J Bacteriol 183, 4932–4937.[CrossRef]
    [Google Scholar]
  13. de Lorenzo, V., Giovannini, F., Herrero, M. & Neilands, J. B. ( 1988;). Metal ion regulation of gene expression.Fur repressor-operator interaction at the promoter region of the aerobactin system of pColV-K30. J Mol Biol 203, 875–884.[CrossRef]
    [Google Scholar]
  14. Dubrac, S. & Touati, D. ( 2002;). Fur-mediated transcriptional and post-transcriptional regulation of FeSOD expression in Escherichia coli. Microbiology 148, 147–156.
    [Google Scholar]
  15. Dundon, W. G., Polenghi, A., Del Guidice, G., Rappuoli, R. & Montecucco, C. ( 2001;). Neutrophil-activating protein (HP-NAP) versus ferritin (Pfr): comparison of synthesis in Helicobacter pylori. FEMS Microbiol Lett 199, 143–149.[CrossRef]
    [Google Scholar]
  16. Escolar, L. Pérez-Martín, J. & de Lorenzo, V. ( 1999;). Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181, 6223–6229.
    [Google Scholar]
  17. Evans, D. J., Jr, Evans, D. G., Lampert, H. C. & Nakano, H. ( 1995a;). Identification of four new prokaryotic bacterioferritins, from Helicobacter pylori, Anabaena variabilis, Bacillus subtilis and Treponema pallidum, by analysis of gene sequences. Gene 153, 123–127.[CrossRef]
    [Google Scholar]
  18. Evans, D. J., Jr, Evans, D. G., Takemura, T., Nakano, H., Lampert, H. C., Graham, D. Y., Granger, D. N. & Kvietys, P. R. ( 1995b;). Characterization of a Helicobacter pylori neutrophil-activating protein. Infect Immun 63, 2213–2220.
    [Google Scholar]
  19. Ferrero, R. L., Cussac, V., Courcoux, P. & Labigne, A. ( 1992;). Construction of isogenic urease-negative mutants of Helicobacter pylori by allelic exchange. J Bacteriol 174, 4212–4217.
    [Google Scholar]
  20. Grant, R. A., Filman, D. J., Finkel, S. E., Kolter, R. & Hogle, J. M. ( 1998;). The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nat Struct Biol 5, 294–303.[CrossRef]
    [Google Scholar]
  21. Hantke, K. ( 2001;). Iron and metal regulation in bacteria. Curr Opin Microbiol 4, 172–177.[CrossRef]
    [Google Scholar]
  22. Hardie, K. R., Lory, S. & Pugsley, A. P. ( 1996;). Insertion of an outer membrane protein in Escherichia coli requires a chaperone-like protein. EMBO J 15, 978–988.
    [Google Scholar]
  23. Harlow, E. & Lane, D. ( 1988;). In Antibodies: a Laboratory Manual, pp. 139–243. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  24. Marshall, B. J., Royce, H., Annear, D. I., Goodwin, C. S., Pearman, J. W., Warren, J. R. & Armstrong, J. A. ( 1984;). Original isolation of Campylobacter pyloridis from human gastric mucosa. Microbios Lett 25, 83–88.
    [Google Scholar]
  25. Namavar, F., Sparrius, M., Veerman, E. C., Appelmelk, B. J. & Vandenbroucke-Grauls, C. M. ( 1998;). Neutrophil-activating protein mediates adhesion of Helicobacter pylori to sulfated carbohydrates on high-molecular-weight salivary mucin. Infect Immun 66, 444–447.
    [Google Scholar]
  26. Nomura, A., Stemmermann, G. N., Chyou, P. H., Kato, I., Perez-Perez, G. I. & Blaser, M. J. ( 1991;). Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N Engl J Med 325, 1132–1136.[CrossRef]
    [Google Scholar]
  27. Olczak, A. A., Olson, J. W. & Maier, R. J. ( 2002;). Oxidative-stress resistance mutants of Helicobacter pylori. J Bacteriol 184, 3186–3193.[CrossRef]
    [Google Scholar]
  28. Parsonnet, J., Friedman, G. D., Vandersteen, D. P., Chang, Y., Vogelman, J. H., Orentreich, N. & Sibley, R. K. ( 1991;). Helicobacter pylori infection and risk of gastric carcinoma. N Engl J Med 325, 1127–1131.[CrossRef]
    [Google Scholar]
  29. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  30. Satin, B., Del Giudice, G., Della Bianca, V. & 7 other authors ( 2000;). The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a protective antigen and a major virulence factor. J Exp Med 191, 1467–1476.[CrossRef]
    [Google Scholar]
  31. Teneberg, S., Miller-Podraza, H., Lampert, H. C., Evans, D. J., Jr, Evans, D. G., Danielsson, D. & Karlsson, K. A. ( 1997;). Carbohydrate binding specificity of the neutrophil-activating protein of Helicobacter pylori. J Biol Chem 272, 19067–19071.[CrossRef]
    [Google Scholar]
  32. Tomb, J.-F., White, O., Kerlavage, A. R. & 39 other authors ( 1997;). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–547.[CrossRef]
    [Google Scholar]
  33. Tonello, F., Dundon, W. G., Satin, B., Molinari, M., Tognon, G., Grandi, G., Del Giudice, G., Rappuoli, R. & Montecucco, C. ( 1999;). The Helicobacter pylori neutrophil-activating protein is an iron-binding protein with dodecameric structure. Mol Microbiol 34, 238–246.[CrossRef]
    [Google Scholar]
  34. Trieu-Cuot, P., Gerbaud, G., Lambert, T. & Courvalin, P. ( 1985;). In vivo transfer of genetic information between Gram-positive and Gram-negative bacteria. EMBO J 4, 3583–3587.
    [Google Scholar]
  35. van Vliet, A. H., Kuipers, E. J., Waidner, B. & 7 other authors ( 2001;). Nickel-responsive induction of urease expression in Helicobacter pylori is mediated at the transcriptional level. Infect Immun 69, 4891–4897.[CrossRef]
    [Google Scholar]
  36. Waidner, B., Greiner, S., Odenbreit, S. & 12 other authors ( 2002;). Essential role of ferritin Pfr in Helicobacter pylori iron metabolism and gastric colonization. Infect Immun 70, 3923–3929.[CrossRef]
    [Google Scholar]
  37. Welch, K. D., Van Eden, M. E. & Aust, S. D. ( 2001;). Modification of ferritin during iron loading. Free Radic Biol Med 31, 999–1006.[CrossRef]
    [Google Scholar]
  38. Wren, B. W., Henderson, J. & Ketley, J. M. ( 1994;). A PCR-based strategy for the rapid construction of defined bacterial deletion mutants. Biotechniques 16, 994–996.
    [Google Scholar]
  39. Yoshida, N., Granger, D. N., Evans, D. J., Jr, Evans, D. G., Graham, D. Y., Anderson, D. C., Wolf, R. E. & Kvietys, P. R. ( 1993;). Mechanisms involved in Helicobacter pylori-induced inflammation. Gastroenterology 105, 1431–1440.[CrossRef]
    [Google Scholar]
  40. Zheng, M., Doan, B., Schneider, T. D. & Storz, G. ( 1999;). OxyR and SoxRS regulation of fur. J Bacteriol 181, 4639–4643.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05070-0
Loading
/content/journal/jmm/10.1099/jmm.0.05070-0
Loading

Data & Media loading...

vol. , part 6, pp. 461 - 469

NapA co-localizes with cellular DNA. BL21(DE3) harbouring either pCC2 (bearing ) [a-c, g (lane +)] or the empty plasmid vector pET3a [d-f, g (lane <MIN>)] were grown for 8 h in LB broth containing 1 mM IPTG at 30 °C with shaking and the production of rNapA by the former was verified by analysis of whole-cell extracts subjected to Coomassie-stained SDS-PAGE (g) and Western blot analysis (data not shown). Cells were stained with DAPI and probed with FITC-conjugated anti-NapA antiserum according to Methods. Microscopy was then performed to visualize the cells by phase-contrast (a, d) and DAPI under UV (b, e) and FITC with a blue filter (c, f). Representative images from three separate experiments are shown. In (g), molecular masses of markers are shown in kDa and the position of rNapA is indicated by the arrow.



IMAGE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error