1887

Abstract

Infection by the human opportunistic fungal pathogen has been increasing over recent years. In an attempt to understand the molecular mechanism of invasion across host tissues, the relationship of enolase to human plasminogen/plasmin was investigated. enolase is a cell-surface protein and an immunodominant antigen in infected patients’ sera. Plasminogen is an abundant plasma protein. Several lines of evidence support the binding of enolase to human plasminogen. Firstly, it was found that various strains were able to bind to plasminogen and its active form, plasmin. Secondly, recombinant enolase was retained in a nickel-chelating affinity column matrix that can bind I-labelled plasminogen or plasmin in a dose-dependent manner. Plasmin(ogen)-specific inhibitors, such as ε-aminocaproic acid and aprotinin, can effectively block plasmin-binding activity. Thirdly, as with many plasminogen receptors, binding of enolase to plasmin(ogen) is lysine-dependent, whereas little inhibition occurred with arginine, aspartate and glutamate. Fourthly, immobilized enolase enhanced plasminogen's affinity for streptokinase at least tenfold, as demonstrated by its activation of plasmin activity. To elucidate the biological significance of this result, it was demonstrated that the plasmin(ogen)-bound cells were able to induce fibrinolysis activity in a matrix-gel assay. Furthermore, plasmin-bound cells had an increased ability to cross an blood–brain barrier system. The results given here indicate that enolase is a plasminogen- and plasmin-binding protein and that the interaction of enolase with the plasminogen system may contribute to invasion of the tissue barrier.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05060-0
2003-08-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/8/JM520803.html?itemId=/content/journal/jmm/10.1099/jmm.0.05060-0&mimeType=html&fmt=ahah

References

  1. Alex, L. A., Korch, C., Selitrennikoff, C. P. & Simon, M. I. ( 1998;). COS1, a two-component histidine kinase that is involved in hyphal development in the opportunistic pathogen Candida albicans. Proc Natl Acad Sci U S A 95, 7069–7073.[CrossRef]
    [Google Scholar]
  2. al-Giery, A. G. & Brewer, J. M. ( 1992;). Characterization of the interaction of yeast enolase with polynucleotides. Biochim Biophys Acta 1159, 134–140.[CrossRef]
    [Google Scholar]
  3. Andronicos, N. M., Ranson, M., Bognacki, J. & Baker, M. S. ( 1997;). The human ENO1 gene product (recombinant human α-enolase) displays characteristics required for a plasminogen binding protein. Biochim Biophys Acta 1337, 27–39.[CrossRef]
    [Google Scholar]
  4. Angiolella, L., Facchin, M., Stringaro, A., Maras, B., Simonetti, N. & Cassone, A. ( 1996;). Identification of a glucan-associated enolase as a main cell wall protein of Candida albicans and an indirect target of lipopeptide antimycotics. J Infect Dis 173, 684–690.[CrossRef]
    [Google Scholar]
  5. Badger, J. L., Stins, M. F. & Kim, K. S. ( 1999;). Citrobacter freundii invades and replicates in human brain microvascular endothelial cells. Infect Immun 67, 4208–4215.
    [Google Scholar]
  6. Braun, B. R. & Johnson, A. D. ( 1997;). Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105–109.[CrossRef]
    [Google Scholar]
  7. Calderone, R. A. & Braun, P. C. ( 1991;). Adherence and receptor relationships of Candida albicans. Microbiol Rev 55, 1–20.
    [Google Scholar]
  8. Chapman, H. A. ( 1997;). Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. Curr Opin Cell Biol 9, 714–724.[CrossRef]
    [Google Scholar]
  9. Colina, A. R., Aumont, F., Deslauriers, N., Belhumeur, P. & de Repentigny, L. ( 1996;). Evidence for degradation of gastrointestinal mucin by Candida albicans secretory aspartyl proteinase. Infect Immun 64, 4514–4519.
    [Google Scholar]
  10. Corner, B. E. & Magee, P. T. ( 1997;). Candida pathogenesis: unravelling the threads of infection. Curr Biol 7, R691–R694.[CrossRef]
    [Google Scholar]
  11. Davies, P. A. & Rudd, P. T. (editors) ( 1994;). Neonatal meningitis (Clinics in Developmental Medicine no. 132), pp. 1–75. London: Mac Keith Press.
  12. De Bernardis, F., Cassone, A., Sturtevant, J. & Calderone, R. ( 1995;). Expression of Candida albicans SAP1 and SAP2 in experimental vaginitis. Infect Immun 63, 1887–1892.
    [Google Scholar]
  13. Dubois, N., Colina, A. R., Aumont, F., Belhumeur, P. & de Repentigny, L. ( 1998;). Overexpression of Candida albicans secretory aspartyl proteinase 2 and its expression in Saccharomyces cerevisiae do not augment virulence in mice. Microbiology 144, 2299–2310.[CrossRef]
    [Google Scholar]
  14. Fu, Y., Filler, S. G., Spellberg, B. J., Fonzi, W., Ibrahim, A. S., Kanbe, T., Ghannoum, M. A. & Edwards, J. E., Jr ( 1998a;). Cloning and characterization of CAD1/AAF1, a gene from Candida albicans that induces adherence to endothelial cells after expression in Saccharomyces cerevisiae. Infect Immun 66, 2078–2084.
    [Google Scholar]
  15. Fu, Y., Rieg, G., Fonzi, W. A., Belanger, P. H., Edwards, J. E., Jr & Filler, S. G. ( 1998b;). Expression of the Candida albicans gene ALS1 in Saccharomyces cerevisiae induces adherence to endothelial and epithelial cells. Infect Immun 66, 1783–1786.
    [Google Scholar]
  16. Gale, C. A., Bendel, C. M., McClellan, M., Hauser, M., Becker, J. M., Berman, J. & Hostetter, M. K. ( 1998;). Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science 279, 1355–1358.[CrossRef]
    [Google Scholar]
  17. Gaur, N. K. & Klotz, S. A. ( 1997;). Expression, cloning, and characterization of a Candida albicans gene, ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins. Infect Immun 65, 5289–5294.
    [Google Scholar]
  18. Gozalbo, D., Gil-Navarro, I., Azorín, I., Renau-Piqueras, J., Martínez, J. P. & Gil, M. L. ( 1998;). The cell wall-associated glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein. Infect Immun 66, 2052–2059.
    [Google Scholar]
  19. Hostetter, M. K. ( 1998;). Linkage of adhesion, morphogenesis, and virulence in Candida albicans. J Lab Clin Med 132, 258–263.[CrossRef]
    [Google Scholar]
  20. Huang, S.-H. & Jong, A. Y. ( 2001;). Cellular mechanisms of microbial proteins contributing to invasion of the blood-brain barrier. Cell Microbiol 3, 277–287.[CrossRef]
    [Google Scholar]
  21. Hube, B., Sanglard, D., Odds, F. C., Hess, D., Monod, M., Schäfer, W., Brown, A. J. & Gow, N. A. R. ( 1997;). Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun 65, 3529–3538.
    [Google Scholar]
  22. Ibrahim, A. S., Filler, S. G., Sanglard, D., Edwards, J. E., Jr & Hube, B. ( 1998;). Secreted aspartyl proteinases and interactions of Candida albicans with human endothelial cells. Infect Immun 66, 3003–3005.
    [Google Scholar]
  23. Irigoyen, J. P., Munoz-Canoves, P., Montero, L., Koziczak, M. & Nagamine, Y. ( 1999;). The plasminogen activator system: biology and regulation. Cell Mol Life Sci 56, 104–132.[CrossRef]
    [Google Scholar]
  24. Jong, A. Y., Stins, M. F., Huang, S.-H., Chen, S. H. M. & Kim, K. S. ( 2001;). Traversal of Candida albicans across human blood-brain barrier in vitro. Infect Immun 69, 4536–4544.[CrossRef]
    [Google Scholar]
  25. Kaminishi, H., Miyaguchi, H., Tamaki, T., Suenaga, N., Hisamatsu, M., Mihashi, I., Matsumoto, H., Maeda, H. & Hagihara, Y. ( 1995;). Degradation of humoral host defense by Candida albicans proteinase. Infect Immun 63, 984–988.
    [Google Scholar]
  26. Kennedy, M. J., Calderone, R. A., Cutler, J. E. & 12 other authors ( 1992;). Molecular basis of Candida albicans adhesion. J Med Vet Mycol 30(Suppl. 1), 95–122.[CrossRef]
    [Google Scholar]
  27. Korhonen, T. K., Lähteenmäki, K., Kukkonen, M., Pouttu, R., Hynonen, U., Savolainen, K., Westerlund-Wikstrom, B. & Virkola, R. ( 1997;). Plasminogen receptors.Turning Salmonella and Escherichia coli into proteolytic organisms. Adv Exp Med Biol 412, 185–192.
    [Google Scholar]
  28. Lähteenmäki, K., Virkola, R., Pouttu, R., Kuusela, P., Kukkonen, M. & Korhonen, T. K. ( 1995;). Bacterial plasminogen receptors: in vitro evidence for a role in degradation of the mammalian extracellular matrix. Infect Immun 63, 3659–3664.
    [Google Scholar]
  29. Leidich, S. D., Ibrahim, A. S., Fu, Y. & 8 other authors ( 1998;). Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans. J Biol Chem 273, 26078–26086.[CrossRef]
    [Google Scholar]
  30. Malke, H., Mechold, U., Gase, K. & Gerlach, D. ( 1994;). Inactivation of the streptokinase gene prevents Streptococcus equisimilis H46A from acquiring cell-associated plasmin activity in the presence of plasminogen. FEMS Microbiol Lett 116, 107–112.[CrossRef]
    [Google Scholar]
  31. Miles, L. A., Dahlberg, C. M., Plescia, J., Felez, J., Kato, K. & Plow, E. F. ( 1991;). Role of cell-surface lysines in plasminogen binding to cells: identification of α-enolase as a candidate plasminogen receptor. Biochemistry 30, 1682–1691.[CrossRef]
    [Google Scholar]
  32. Mitchell, A. P. ( 1998;). Dimorphism and virulence in Candida albicans. Curr Opin Microbiol 1, 687–692.[CrossRef]
    [Google Scholar]
  33. Morschhäuser, J., Virkola, R., Korhonen, T. K. & Hacker, J. ( 1997;). Degradation of human subendothelial extracellular matrix by proteinase-secreting Candida albicans. FEMS Microbiol Lett 153, 349–355.[CrossRef]
    [Google Scholar]
  34. Naglik, J. R., Newport, G., White, T. C., Fernandes-Naglik, L. L., Greenspan, J. S., Greenspan, D., Sweet, S. P., Challacombe, S. J. & Agabian, N. ( 1999;). In vivo analysis of secreted aspartyl proteinase expression in human oral candidiasis. Infect Immun 67, 2482–2490.
    [Google Scholar]
  35. Nakajima, K., Hamanoue, M., Takemoto, N., Hattori, T., Kato, K. & Kohsaka, S. ( 1994;). Plasminogen binds specifically to α-enolase on rat neuronal plasma membrane. J Neurochem 63, 2048–2057.
    [Google Scholar]
  36. Pancholi, V. & Fischetti, V. A. ( 1998;). α-Enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem 273, 14503–14515.[CrossRef]
    [Google Scholar]
  37. Pla, J., Gil, C., Monteoliva, L., Navarro-Garcia, F., Sanchez, M. & Nombela, C. ( 1996;). Understanding Candida albicans at the molecular level. Yeast 12, 1677–1702.[CrossRef]
    [Google Scholar]
  38. Rodier, M. H., el Moudni, B., Kauffmann-Lacroix, C., Daniault, G. & Jacquemin, J. L. ( 1999;). A Candida albicans metallopeptidase degrades constitutive proteins of extracellular matrix. FEMS Microbiol Lett 177, 205–210.[CrossRef]
    [Google Scholar]
  39. Ruchel, R. ( 1986;). Cleavage of immunoglobulins by pathogenic yeasts of the genus Candida. Microbiol Sci 3, 316–319.
    [Google Scholar]
  40. Sanglard, D., Hube, B., Monod, M., Odds, F. C. & Gow, N. A. ( 1997;). A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect Immun 65, 3539–3546.
    [Google Scholar]
  41. Staib, P., Kretschmar, M., Nichterlein, T., Köhler, G., Michel, S., Hof, H., Hacker, J. & Morschhäuser, J. ( 1999;). Host-induced, stage-specific virulence gene activation in Candida albicans during infection. Mol Microbiol 32, 533–546.[CrossRef]
    [Google Scholar]
  42. Staib, P., Kretschmar, M., Nichterlein, T., Hof, H. & Morschhäuser, J. ( 2000;). Differential activation of a Candida albicans virulence gene family during infection. Proc Natl Acad Sci U S A 97, 6102–6107.[CrossRef]
    [Google Scholar]
  43. Sundstrom, P. ( 1999;). Adhesins in Candida albicans. Curr Opin Microbiol 2, 353–357.[CrossRef]
    [Google Scholar]
  44. Tuan, T.-L., Song, A., Chang, S., Younai, S. & Nimni, M. E. ( 1996;). In vitro fibroplasia: matrix contraction, cell growth, and collagen production of fibroblasts cultured in fibrin gels. Exp Cell Res 223, 127–134.[CrossRef]
    [Google Scholar]
  45. Tuomanen, E. ( 1996;). Entry of pathogens into the central nervous system. FEMS Microbiol Rev 18, 289–299.[CrossRef]
    [Google Scholar]
  46. van Deventer, A., van Vliet, H. J., Hop, W. C. & Goessens, W. H. ( 1994;). Diagnostic value of anti-Candida enolase antibodies. J Clin Microbiol 32, 17–23.
    [Google Scholar]
  47. Wistow, G. J., Lietman, T., Williams, L. A., Stapel, S. O., de Jong, W. W., Horwitz, J. & Piatigorsky, J. ( 1988;). τ-Crystallin/α-enolase: one gene encodes both an enzyme and a lens structural protein. J Cell Biol 107, 2729–2736.[CrossRef]
    [Google Scholar]
  48. Zhang, J. R. & Tuomanen, E. ( 1999;). Molecular and cellular mechanisms for microbial entry into the CNS. J Neurovirol 5, 591–603.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05060-0
Loading
/content/journal/jmm/10.1099/jmm.0.05060-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error