1887

Abstract

We investigated the presence of β-lactamase genes () in 26 strains of already found positive for the gene, a plasmid-mediated quinolone resistance determinant. Three strains of , isolated in the period 2008–2009 at the University Hospital in Verona, were positive for LAP-2, a narrow-spectrum β-lactamase. These strains, namely VRB586, VRE185 and VRE196, were cultured from urine, bile and peritoneal drainage, respectively, of different patients from different units. The and resistance determinant genes were separated by IS and were located on a 97 kb conjugable and untypable plasmid, which could be transferred to a recipient strain, J53. The fluoroquinolone and ceftazidime MICs increased 1–2-fold in the transconjugant cells. The three strains were found to be clonal by PFGE and were identified as belonging to ST147, an internationally successful clone, by MLST. The plasmid sequence, including IS and genes, of ST147 was found to be highly similar to previously detected -harbouring plasmids, suggesting the plasmid has a stable genetic structure and that these resistance determinants have a common source. To the best of our knowledge, this is the first report of the internationally successful ST147 strain carrying and genes and is the first case of LAP β-lactamase in Italy.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.050542-0
2013-02-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/2/269.html?itemId=/content/journal/jmm/10.1099/jmm.0.050542-0&mimeType=html&fmt=ahah

References

  1. Aschbacher R., Doumith M., Livermore D. M., Larcher C., Woodford N. 2008; Linkage of acquired quinolone resistance (qnrS1) and metallo-β-lactamase (bla VIM-1) genes in multiple species of Enterobacteriaceae from Bolzano, Italy. J Antimicrob Chemother 61:515–523 [View Article][PubMed]
    [Google Scholar]
  2. Barton B. M., Harding G. P., Zuccarelli A. J. 1995; A general method for detecting and sizing large plasmids. Anal Biochem 226:235–240 [View Article][PubMed]
    [Google Scholar]
  3. Brisse S., Verhoef J. 2001; Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping. Int J Syst Evol Microbiol 51:915–924 [View Article][PubMed]
    [Google Scholar]
  4. Bush K., Fisher J. F. 2011; Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from Gram-negative bacteria. Annu Rev Microbiol 65:455–478 [View Article][PubMed]
    [Google Scholar]
  5. Cano M. E., Rodríguez-Martínez J. M., Agüero J., Pascual A., Calvo J., García-Lobo J. M., Velasco C., Francia M. V., Martínez-Martínez L. 2009; Detection of plasmid-mediated quinolone resistance genes in clinical isolates of Enterobacter spp. in Spain. J Clin Microbiol 47:2033–2039 [View Article][PubMed]
    [Google Scholar]
  6. Carattoli A. 2011; Plasmids in Gram-negatives: molecular typing of resistance plasmids. Int J Med Microbiol 301:654–658 [View Article][PubMed]
    [Google Scholar]
  7. Carattoli A., Bertini A., Villa L., Falbo V., Hopkins K. L., Threlfall E. J. 2005; Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63:219–228 [View Article][PubMed]
    [Google Scholar]
  8. Chen Y. T., Shu H. Y., Li L. H., Liao T. L., Wu K. M., Shiau Y. R., Yan J. J., Su I. J., Tsai S. F., Lauderdale T. L. 2006; Complete nucleotide sequence of pK245, a 98-kilobase plasmid conferring quinolone resistance and extended-spectrum-β-lactamase activity in a clinical Klebsiella pneumoniae isolate. Antimicrob Agents Chemother 50:3861–3866 [View Article][PubMed]
    [Google Scholar]
  9. Dahmen S., Poirel L., Mansour W., Bouallègue O., Nordmann P. 2010; Prevalence of plasmid-mediated quinolone resistance determinants in Enterobacteriaceae from Tunisia. Clin Microbiol Infect 16:1019–1023[PubMed] [CrossRef]
    [Google Scholar]
  10. Dallenne C., Da Costa A., Decré D., Favier C., Arlet G. 2010; Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae . J Antimicrob Chemother 65:490–495 [View Article][PubMed]
    [Google Scholar]
  11. Damjanova I., Tóth A., Pászti J., Hajbel-Vékony G., Jakab M., Berta J., Milch H., Füzi M. 2008; Expansion and countrywide dissemination of ST11, ST15 and ST147 ciprofloxacin-resistant CTX-M-15-type β-lactamase-producing Klebsiella pneumoniae epidemic clones in Hungary in 2005 – the new ‘MRSAs’?. J Antimicrob Chemother 62:978–985 [View Article][PubMed]
    [Google Scholar]
  12. García A., Navarro F., Miró E., Mirelis B., Campoy S., Coll P. 2005; Characterization of the highly variable region surrounding the bla CTX-M-9 gene in non-related Escherichia coli from Barcelona. J Antimicrob Chemother 56:819–826 [View Article][PubMed]
    [Google Scholar]
  13. García-Fernández A., Fortini D., Veldman K., Mevius D., Carattoli A. 2009; Characterization of plasmids harbouring qnrS1, qnrB2 and qnrB19 genes in Salmonella . J Antimicrob Chemother 63:274–281 [View Article][PubMed]
    [Google Scholar]
  14. Giakkoupi P., Papagiannitsis C. C., Miriagou V., Pappa O., Polemis M., Tryfinopoulou K., Tzouvelekis L. S., Vatopoulos A. C. 2011; An update of the evolving epidemic of bla KPC-2-carrying Klebsiella pneumoniae in Greece (2009–10). J Antimicrob Chemother 66:1510–1513 [View Article][PubMed]
    [Google Scholar]
  15. Hu F. P., Xu X. G., Zhu D. M., Wang M. G. 2008; Coexistence of qnrB4 and qnrS1 in a clinical strain of Klebsiella pneumoniae . Acta Pharmacol Sin 29:320–324 [View Article][PubMed]
    [Google Scholar]
  16. Huang Z., Mi Z., Wang C. 2008; A novel β-lactamase gene, LAP-2, produced by an Enterobacter cloacae clinical isolate in China. J Hosp Infect 70:95–96 [View Article][PubMed]
    [Google Scholar]
  17. Iabadene H., Messai Y., Ammari H., Ramdani-Bouguessa N., Lounes S., Bakour R., Arlet G. 2008; Dissemination of ESBL and Qnr determinants in Enterobacter cloacae in Algeria. J Antimicrob Chemother 62:133–136 [View Article][PubMed]
    [Google Scholar]
  18. Karah N., Poirel L., Bengtsson S., Sundqvist M., Kahlmeter G., Nordmann P., Sundsfjord A., Samuelsen O. for the Norwegian Study Group on PMQR 2010; Plasmid-mediated quinolone resistance determinants qnr and aac(6′)-Ib-cr in Escherichia coli and Klebsiella spp. from Norway and Sweden. Diagn Microbiol Infect Dis 66:425–431 [View Article][PubMed]
    [Google Scholar]
  19. Kehrenberg C., Friederichs S., de Jong A., Michael G. B., Schwarz S. 2006; Identification of the plasmid-borne quinolone resistance gene qnrS in Salmonella enterica serovar Infantis. J Antimicrob Chemother 58:18–22 [View Article][PubMed]
    [Google Scholar]
  20. Papagiannitsis C. C., Kotsakis S. D., Petinaki E., Vatopoulos A. C., Tzelepi E., Miriagou V., Tzouvelekis L. S. 2011; Characterization of metallo-β-lactamase VIM-27, an A57S mutant of VIM-1 associated with Klebsiella pneumoniae ST147. Antimicrob Agents Chemother 55:3570–3572 [View Article][PubMed]
    [Google Scholar]
  21. Park Y. J., Yu J. K., Kim S. I., Lee K., Arakawa Y. 2009; Accumulation of plasmid-mediated fluoroquinolone resistance genes, qepA and qnrS1, in Enterobacter aerogenes co-producing RmtB and class A β-lactamase LAP-1. Ann Clin Lab Sci 39:55–59[PubMed]
    [Google Scholar]
  22. Poirel L., Leviandier C., Nordmann P. 2006; Prevalence and genetic analysis of plasmid-mediated quinolone resistance determinants QnrA and QnrS in Enterobacteriaceae isolates from a French university hospital. Antimicrob Agents Chemother 50:3992–3997 [View Article][PubMed]
    [Google Scholar]
  23. Poirel L., Cattoir V., Soares A., Soussy C. J., Nordmann P. 2007; Novel Ambler class A β-lactamase LAP-1 and its association with the plasmid-mediated quinolone resistance determinant QnrS1 . Antimicrob Agents Chemother 51:631–637 [View Article][PubMed]
    [Google Scholar]
  24. Poirel L., Dortet L., Bernabeu S., Nordmann P. 2011; Genetic features of bla NDM-1-positive Enterobacteriaceae . Antimicrob Agents Chemother 55:5403–5407 [View Article][PubMed]
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Samuelsen O., Toleman M. A., Hasseltvedt V., Fuursted K., Leegaard T. M., Walsh T. R., Sundsfjord A., Giske C. G. 2011; Molecular characterization of VIM-producing Klebsiella pneumoniae from Scandinavia reveals genetic relatedness with international clonal complexes encoding transferable multidrug resistance. Clin Microbiol Infect 17:1811–1816 [View Article][PubMed]
    [Google Scholar]
  27. Schlesinger J., Navon-Venezia S., Chmelnitsky I., Hammer-Münz O., Leavitt A., Gold H. S., Schwaber M. J., Carmeli Y. 2005; Extended-spectrum β-lactamases among Enterobacter isolates obtained in Tel Aviv, Israel. Antimicrob Agents Chemother 49:1150–1156 [View Article][PubMed]
    [Google Scholar]
  28. Wang C. X., Huang Z. M., Mi Z. H., Chen G. Q. 2009; A Klebsiella pneumoniae clinical isolate producing the LAP-2 β-lactamase in China. J Hosp Infect 71:189–190 [View Article][PubMed]
    [Google Scholar]
  29. Weigel L. M., Steward C. D., Tenover F. C. 1998; gyrA mutations associated with fluoroquinolone resistance in eight species of Enterobacteriaceae . Antimicrob Agents Chemother 42:2661–2667[PubMed]
    [Google Scholar]
  30. Woodford N., Turton J. F., Livermore D. M. 2011; Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 35:736–755 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.050542-0
Loading
/content/journal/jmm/10.1099/jmm.0.050542-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error