1887

Abstract

The early initiation of targeted antibiotic therapy in patients with bacteraemia and septic shock impacts favourably on outcomes. Rapid methods are therefore increasingly employed for bacterial identification directly from positive blood culture bottles, but with variable success. We evaluated the performance of the Gram Positive 12 multiplex tandem PCR (MT-PCR) assay (AusDiagnostics; catalogue no. 6202, version 07) containing targets for the identification of staphylococci including , streptococci including , enterococci including and and their common antibiotic resistance genes (, , ). A total of 673 aerobic and anaerobic blood culture broths demonstrating Gram-positive cocci on microscopy were analysed in parallel with traditional phenotypic methods. Amplification of the internal control was inhibited in 79/673 (11.7 %) samples; however, MT-PCR identification was in concordance with phenotypic identification to the genus level in 96.6 % (537/556) of the remaining monomicrobial specimens and to the species level, where applicable, in 100 % (172/172) of samples. MT-PCR identification for 94.7 % (36/38) of polymicrobial samples matched traditional phenotypic identification. Meticillin and vancomycin susceptibility results determined by MT-PCR in blood culture broths demonstrated complete agreement with those determined by phenotypic methods in all 143 isolates and eight isolates, respectively. Gram-positive pathogens and their key antibiotic resistance markers were reliably identified with the MT-PCR assay within 3 h of a positive blood culture result.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.050385-0
2013-02-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/2/223.html?itemId=/content/journal/jmm/10.1099/jmm.0.050385-0&mimeType=html&fmt=ahah

References

  1. Bearman G. M., Wenzel R. P.. ( 2005;). Bacteremias: a leading cause of death. . Arch Med Res 36:, 646–659. [CrossRef][PubMed]
    [Google Scholar]
  2. Chen J. R., Lee S. Y., Yang B. H., Lu J. J.. ( 2008;). Rapid identification and susceptibility testing using the VITEK 2 system using culture fluids from positive BacT/ALERT blood cultures. . J Microbiol Immunol Infect 41:, 259–264.[PubMed]
    [Google Scholar]
  3. Christner M., Rohde H., Wolters M., Sobottka I., Wegscheider K., Aepfelbacher M.. ( 2010;). Rapid identification of bacteria from positive blood culture bottles by use of matrix-assisted laser desorption-ionization time of flight mass spectrometry fingerprinting. . J Clin Microbiol 48:, 1584–1591. [CrossRef][PubMed]
    [Google Scholar]
  4. CLSI ( 2011;). Performance Standards for Antimicrobial Susceptibility Testing; 21st Informational Supplement M100-S21. . Wayne, PA: Clinical and Laboratory Standards Institute.
  5. Courvalin P.. ( 2006;). Vancomycin resistance in Gram-positive cocci. . Clin Infect Dis 42: (Suppl. 1), S25–S34. [CrossRef][PubMed]
    [Google Scholar]
  6. Deurenberg R. H., Vink C., Kalenic S., Friedrich A. W., Bruggeman C. A., Stobberingh E. E.. ( 2007;). The molecular evolution of methicillin-resistant Staphylococcus aureus. . Clin Microbiol Infect 13:, 222–235. [CrossRef][PubMed]
    [Google Scholar]
  7. Garnacho-Montero J., García-Cabrera E., Diaz-Martín A., Lepe-Jiménez J. A., Iraurgi-Arcarazo P., Jiménez-Alvarez R., Revuelto-Rey J., Aznar-Martín J.. ( 2010;). Determinants of outcome in patients with bacteraemic pneumococcal pneumonia: importance of early adequate treatment. . Scand J Infect Dis 42:, 185–192. [CrossRef][PubMed]
    [Google Scholar]
  8. Gherardi G., Angeletti S., Panitti M., Pompilio A., Di Bonaventura G., Crea F., Avola A., Fico L., Palazzo C.. & other authors ( 2012;). Comparative evaluation of the Vitek-2 Compact and Phoenix systems for rapid identification and antibiotic susceptibility testing directly from blood cultures of Gram-negative and Gram-positive isolates. . Diagn Microbiol Infect Dis 72:, 20–31. [CrossRef][PubMed]
    [Google Scholar]
  9. Johnson P. D., Ballard S. A., Grabsch E. A., Stinear T. P., Seemann T., Young H. L., Grayson M. L., Howden B. P.. ( 2010;). A sustained hospital outbreak of vancomycin-resistant Enterococcus faecium bacteremia due to emergence of vanB E. faecium sequence type 203. . J Infect Dis 202:, 1278–1286. [CrossRef][PubMed]
    [Google Scholar]
  10. Jukes L., Mikhail J., Bome-Mannathoko N., Hadfield S. J., Harris L. G., El-Bouri K., Davies A. P., Mack D.. ( 2010;). Rapid differentiation of Staphylococcus aureus, Staphylococcus epidermidis and other coagulase-negative staphylococci and meticillin susceptibility testing directly from growth-positive blood cultures by multiplex real-time PCR. . J Med Microbiol 59:, 1456–1461. [CrossRef][PubMed]
    [Google Scholar]
  11. Khatib R., Saeed S., Sharma M., Riederer K., Fakih M. G., Johnson L. B.. ( 2006;). Impact of initial antibiotic choice and delayed appropriate treatment on the outcome of Staphylococcus aureus bacteremia. . Eur J Clin Microbiol Infect Dis 25:, 181–185. [CrossRef][PubMed]
    [Google Scholar]
  12. Kok J., Thomas L. C., Olma T., Chen S. C. A., Iredell J. R.. ( 2011;). Identification of bacteria in blood culture broths using matrix-assisted laser desorption-ionization Sepsityper™ and time of flight mass spectrometry. . PLoS ONE 6:, e23285. [CrossRef][PubMed]
    [Google Scholar]
  13. Kumar A., Roberts D., Wood K. E., Light B., Parrillo J. E., Sharma S., Suppes R., Feinstein D., Zanotti S.. & other authors ( 2006;). Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. . Crit Care Med 34:, 1589–1596. [CrossRef][PubMed]
    [Google Scholar]
  14. Laurent F., Chardon H., Haenni M., Bes M., Reverdy M.-E., Madec J.-Y., Lagier E., Vandenesch F., Tristan A.. ( 2012;). MRSA harboring mecA variant gene mecC, France. . Emerg Infect Dis 18:, 1465–1467. [CrossRef][PubMed]
    [Google Scholar]
  15. Livermore D. M., Blaser M., Carrs O., Cassell G., Fishman N., Guidos R., Levy S., Powers J., Norrby R.. & other authors ( 2011;). Discovery research: the scientific challenge of finding new antibiotics. . J Antimicrob Chemother 66:, 1941–1944. [CrossRef][PubMed]
    [Google Scholar]
  16. Parta M., Goebel M., Matloobi M., Stager C., Musher D. M.. ( 2009;). Identification of methicillin-resistant or methicillin-susceptible Staphylococcus aureus in blood cultures and wound swabs by GeneXpert. . J Clin Microbiol 47:, 1609–1610. [CrossRef][PubMed]
    [Google Scholar]
  17. Paul M., Kariv G., Goldberg E., Raskin M., Shaked H., Hazzan R., Samra Z., Paghis D., Bishara J., Leibovici L.. ( 2010;). Importance of appropriate empirical antibiotic therapy for methicillin-resistant Staphylococcus aureus bacteraemia. . J Antimicrob Chemother 65:, 2658–2665. [CrossRef][PubMed]
    [Google Scholar]
  18. Paule S. M., Pasquariello A. C., Thomson R. B. Jr, Kaul K. L., Peterson L. R.. ( 2005;). Real-time PCR can rapidly detect methicillin-susceptible and methicillin-resistant Staphylococcus aureus directly from positive blood culture bottles. . Am J Clin Pathol 124:, 404–407. [CrossRef][PubMed]
    [Google Scholar]
  19. Peters R. P., Savelkoul P. H., Simoons-Smit A. M., Danner S. A., Vandenbroucke-Grauls C. M., van Agtmael M. A.. ( 2006;). Faster identification of pathogens in positive blood cultures by fluorescence in situ hybridization in routine practice. . J Clin Microbiol 44:, 119–123. [CrossRef][PubMed]
    [Google Scholar]
  20. Petti C. A., Weinstein M. P., Carroll K. C.. ( 2011;). Systems for detection and identification of bacteria and yeasts. . In Manual of Clinical Microbiology, , 10th edn., pp. 15–26. Edited by Versalovic J., Carroll K. C., Jorgensen J. H., Funke G., Landry M. L., Warnock D. W... Washington, DC:: American Society for Microbiology Press;.
    [Google Scholar]
  21. Prod’hom G., Bizzini A., Durussel C., Bille J., Greub G.. ( 2010;). Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets. . J Clin Microbiol 48:, 1481–1483. [CrossRef][PubMed]
    [Google Scholar]
  22. Regan J. F., Furtado M. R., Brevnov M. G., Jordan J. A.. ( 2012;). A sample extraction method for faster, more sensitive PCR-based detection of pathogens in blood culture. . J Mol Diagn 14:, 120–129. [CrossRef][PubMed]
    [Google Scholar]
  23. Retamar P., Portillo M. M., López-Prieto M. D., Rodríguez-López F., de Cueto M., García M. V., Gómez M. J., Del Arco A., Muñoz A.. & other authors ( 2012;). Impact of inadequate empirical therapy on the mortality of patients with bloodstream infections: a propensity score-based analysis. . Antimicrob Agents Chemother 56:, 472–478. [CrossRef][PubMed]
    [Google Scholar]
  24. Suppli M., Aabenhus R., Harboe Z. B., Andersen L. P., Tvede M., Jensen J.-U. S.. ( 2011;). Mortality in enterococcal bloodstream infections increases with inappropriate antimicrobial therapy. . Clin Microbiol Infect 17:, 1078–1083. [CrossRef][PubMed]
    [Google Scholar]
  25. Wolk D. M., Struelens M. J., Pancholi P., Davis T., Della-Latta P., Fuller D., Picton E., Dickenson R., Denis O.. & other authors ( 2009;). Rapid detection of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in wound specimens and blood cultures: multicenter preclinical evaluation of the Cepheid Xpert MRSA/SA skin and soft tissue and blood culture assays. . J Clin Microbiol 47:, 823–826. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.050385-0
Loading
/content/journal/jmm/10.1099/jmm.0.050385-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error