Incidence of virulence determinants in clinical and isolates collected in Sardinia (Italy) Free

Abstract

Enterococci are widely distributed in the environment; within the human body, they are normal commensals of the oral cavity, gastrointestinal tract and vagina. In recent years, enterococci have become one of the most frequent causes of acquired nosocomial infections worldwide. The molecular mechanism of virulence of these bacteria is still not completely understood. The aims of this work were to characterize phenotypically 47 isolates of and collected in Sardinia (Italy) by their abilities to adhere to different epithelial cell lines (Vero and Caco-2 cells) and to associate their phenotypes with the presence of known virulence genes detected within their genomes by PCR. The following genes were amplified: AS (aggregation substance), (surface protein gene), (accessory colonization factor), ( endocarditis antigen) and (gelatinase). The virulence genes were detected in isolates only, with the exception of , which was found in both species. The phenotypic and genotypic results were also compared with the susceptibility of isolates to various antibiotics.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05038-0
2003-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/6/JM520608.html?itemId=/content/journal/jmm/10.1099/jmm.0.05038-0&mimeType=html&fmt=ahah

References

  1. Archimbaud C, Shankar N, Forestier C, Baghdayan A, Gilmore M. S, Charbonne F, Joly B. 2002; In vitro adhesive properties and virulence factors of Enterococcus faecalis strains. Res Microbiol 153:75–80 [CrossRef]
    [Google Scholar]
  2. Baldassarri L, Bertuccini L, Ammendolia M. G, Gherardi G, Creti R. 2001; Variant esp gene in vancomycin-sensitive Enterococcus faecium . Lancet 357:1802–1802
    [Google Scholar]
  3. Chow J. W, Thal L. A, Perri M. B, Vazquez J. A, Donabedian S. M, Clewell D. B, Zervos M. J. 1993; Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob Agents Chemother 37:2474–2477 [CrossRef]
    [Google Scholar]
  4. Coque T. M, Patterson J. E, Steckelberg J. M, Murray B. E. 1995; Incidence of hemolysin, gelatinase, and aggregation substance among enterococci isolated from patients with endocarditis and other infections and from feces of hospitalized and community-based persons. J Infect Dis 171:1223–1229 [CrossRef]
    [Google Scholar]
  5. Dicuonzo G, Gherardi G, Lorino G. 7 other authors 2001; Antibiotic resistance and genotypic characterization by PFGE of clinical and environmental isolates of enterococci. FEMS Microbiol Lett 201:205–211 [CrossRef]
    [Google Scholar]
  6. Eaton T. J, Gasson M. J. 2001; Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67:1628–1635 [CrossRef]
    [Google Scholar]
  7. Heaton M. P, Discotto L. F, Pucci M. J, Handwerger S. 1996; Mobilization of vancomycin resistance by transposon-mediated fusion of a VanA plasmid with an Enterococcus faecium sex pheromone-response plasmid. Gene 171:9–17 [CrossRef]
    [Google Scholar]
  8. Ike Y, Hashimoto H, Clewell D. B. 1987; High incidence of hemolysin production by Enterococcus ( Streptococcu s) faecalis strains associated with human parenteral infections. J Clin Microbiol 25:1524–1528
    [Google Scholar]
  9. Jett B. D, Huycke M. M, Gilmore M. S. 1994; Virulence of enterococci. Clin Microbiol Rev 7:462–478
    [Google Scholar]
  10. Johnson A. P. 1994; The pathogenicity of enterococci. J Antimicrob Chemother 33:1083–1089 [CrossRef]
    [Google Scholar]
  11. Kreft B, Marre R, Schramm U, Wirth R. 1992; Aggregation substance of Enterococcus faecalis mediates adhesion to cultured renal tubular cells. Infect Immun 60:25–30
    [Google Scholar]
  12. Lowe A. M, Lambert P. A, Smith A. W. 1995; Cloning of an Enterococcus faecalis endocarditis antigen: homology with adhesins from some oral streptococci. Infect Immun 63:703–706
    [Google Scholar]
  13. Nallapareddy S. R, Qin X, Weinstock G. M, Hook M, Murray B. E. 2000; Enterococcus faecalis adhesin, ace, mediates attachment to extracellular matrix proteins collagen type IV and laminin as well as collagen type I. Infect Immun 68:5218–5224 [CrossRef]
    [Google Scholar]
  14. Satake S, Clark N, Rimland D, Nolte F. S, Tenover F. C. 1997; Detection of vancomycin-resistant enterococci in fecal samples by PCR. J Clin Microbiol 35:2325–2330
    [Google Scholar]
  15. Schlievert P. M, Gahr P. J, Assimacopoulos A. P, Dinges M. M, Stoehr J. A, Harmala J. W, Hirt H, Dunny G. M. 1998; Aggregation and binding substances enhance pathogenicity in rabbit models of Enterococcus faecalis endocarditis. Infect Immun 66:218–223
    [Google Scholar]
  16. Sechi L. A, Zanetti S, Dupre I, Cappiello M. G, Delogu G, Mortensen J. E, Daneo-Moore L, Fadda G. 1998a; Molecular epidemiology by ribotyping and PCR-ribotyping of Enterococcus faecium strains isolated from intercontinental areas. New Microbiol 21:113–122
    [Google Scholar]
  17. Sechi L. A, Franklin R, Dupre I, Zanetti S, Fadda G, Daneo-Moore L. 1998b; Characterization of new insertion-like sequences of Enterococcus hirae and their dissemination among clinical Enterococcus faecium isolates. FEMS Microbiol Lett 161:165–172 [CrossRef]
    [Google Scholar]
  18. Shankar V, Baghdayan A. S, Huycke M. M, Lindahl G, Gilmore M. S. 1999; Infection-derived Enterococcus faecalis strains are enriched in esp , a gene encoding a novel surface protein. Infect Immun 67:193–200
    [Google Scholar]
  19. Shankar N, Lockatell C. V, Baghdayan A. S, Drachenberg C, Gilmore M. S, Johnson D. E. 2001; Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect Immun 69:4366–4372 [CrossRef]
    [Google Scholar]
  20. Singh K. V, Coque T. M, Weinstock G. M, Murray B. E. 1998; In vivo testing of an Enterococcus faecalis efaA mutant and use of efaA homologs for species identification. FEMS Immunol Med Microbiol 21:323–331 [CrossRef]
    [Google Scholar]
  21. Su Y. A, Sulavik M. C, He P, Makinen K. K, Makinen P. L, Fiedler S, Wirth R, Clewell D. B. 1991; Nucleotide sequence of the gelatinase gene ( gelE ) from Enterococcus faecalis subsp. liquefacien s. Infect Immun 59:415–420
    [Google Scholar]
  22. Sußmuth S. D, Muscholl-Silberhorn A, Wirth R, Susa M, Marre R, Rozdzinski E. 2000; Aggregation substance promotes adherence, phagocytosis, and intracellular survival of Enterococcus faecalis within human macrophages and suppresses respiratory burst. Infect Immun 68:4900–4906 [CrossRef]
    [Google Scholar]
  23. Toledo-Arana A, Valle J, Solano C. 7 other authors 2001; The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol 67:4538–4545 [CrossRef]
    [Google Scholar]
  24. Wells C. L, Moore E. A, Hoag J. A, Hirt H, Dunny G. M, Erlandsen S. L. 2000; Inducible expression of Enterococcus faecalis aggregation substance surface protein facilitates bacterial internalization by cultured enterocytes. Infect Immun 68:7190–7194 [CrossRef]
    [Google Scholar]
  25. Willems R. J, Homan W, Top J. 9 other authors 2001; Variant esp gene as a marker of a distinct genetic lineage of vancomycin-resistant Enterococcus faecium spreading in hospitals. Lancet 357:853–855 [CrossRef]
    [Google Scholar]
  26. Woodford N, Soltani M, Hardy K. J. 2001; Frequency of esp in Enterococcus faecium isolates. Lancet 358:584– 584 [CrossRef]
    [Google Scholar]
  27. Zanetti S, Sechi L, Angioi A, Perazzona B, Fadda G. 1992; Entry of pyelonephritogenic Escherichia coli into HEp-2 cells due to actin polymerization. Microbiologica 15:117–123
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05038-0
Loading
/content/journal/jmm/10.1099/jmm.0.05038-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed