1887

Abstract

A library of mAbs to the species- and serogroup-specific epitopes of serogroups I–VI was developed. These mAbs recognized linear sequential protein epitopes, as shown by ELISA and immunoblotting. Using the mAbs, was found to produce serogroup-specific proteins, whose synthesis was dependent on cultivation temperature. These proteins appeared to be parts of heat-stable O-antigens prepared by heating serogroups I–VI at 100 °C for 2 h, and are responsible for the protein serotype specificity of these bacteria. The high specificity of serogroup- or species-specific mAbs obtained in ELISA suggests that they may be effective for serotyping of strains or differentiation from other pathogenic yersiniae.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05036-0
2003-05-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/5/JM520505.html?itemId=/content/journal/jmm/10.1099/jmm.0.05036-0&mimeType=html&fmt=ahah

References

  1. Aksenov, M. Y., Misurenko, E. N., Shustrova, N. M., Garovnikova, Yu. S., Gintsburg, A. L. & Litvin, V. Yu. ( 1995;). The detection and study of the dynamics of the count of nonculturable forms of Yersinia pseudotuberculosis in the environment by using the polymerase chain reaction. Zh Mikrobiol Epidemiol Immunobiol, 80–83 (in Russian).
  2. Beher, M. G., Schnaitman, C. A. & Pugsley, A. P. ( 1984;). Major heat-modifiable outer membrane protein in gram-negative bacteria: comparison with the ompA protein of Escherichia coli. J Bacteriol 143, 906–913.
    [Google Scholar]
  3. Braithwaite, C. E., Smith, E. E., Songer, J. G. & Reine, A. H. ( 1993;). Characterization of detergent-soluble proteins of Corynebacterium pseudotuberculosis. Vet Microbiol 38, 59–70.[CrossRef]
    [Google Scholar]
  4. Burgasova, O. A., Kuleshova, L. B., Tseneva, G. Ya., Yushchuk, N. D., Kukhtevich, E. V., Kuznetsov, V. F. & Bondarenko, V. M. ( 1996;). A comparative evaluation of different immunological reactions in the diagnosis of pseudotuberculosis. Zh Mikrobiol Epidemiol Immunobiol, 48–51 (in Russian).
  5. Cornelis, G. R., Boland, A., Boyd, A. P., Geuijen, C., Iriarte, M., Neyt, C., Sory, M. P. & Stainier, I. ( 1998;). The virulence plasmid of Yersinia, an antihost genome. Microbiol Mol Biol Rev 62, 1315–1352.
    [Google Scholar]
  6. Drobkov, V. I., Marakulin, I. V., Pogorelsky, I. P., Darmov, I. V. & Smirnov, E. V. ( 1996;). The antibody spectrum after the inoculation of sensitive animals with Yersinia pestis and Yersinia pseudotuberculosis bacteria. Zh Mikrobiol Epidemiol Immunobiol, 81–85 (in Russian).
  7. Feodorova, V. A. & Devdariani, Z. L. ( 2000;). Development, characterisation and diagnostic application of monoclonal antibodies against Yersinia pestis fibrinolysin and coagulase. J Med Microbiol 49, 261–269.
    [Google Scholar]
  8. Feodorova, V. A., Gromova, O. V., Devdariani, Z. L., Dzhaparidze, M. N. & Teryoshkina, N. Y. ( 2001;). Immunochemical characterisation of Vibrio cholerae O139 O antigens and production of a diagnostic antiserum without absorption. J Med Microbiol 50, 499–508.
    [Google Scholar]
  9. Frasch, C. E. & Gotschlich, E. C. ( 1974;). An outer membrane protein of Neisseria meningitidis group B responsible for serotype specificity. J Exp Med 140, 87–104.[CrossRef]
    [Google Scholar]
  10. Galfre, G., Howe, S. C., Milstein, C., Butcher, G. W. & Howard, J. C. ( 1977;). Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature 266, 550–552.[CrossRef]
    [Google Scholar]
  11. Knapp, W. & Weber, A. ( 1982;). Yersinia pseudotuberculosis. In Handbuch der bakteriellen Infectionen bei Tieren, vol. 4, pp. 466–518. Edited by H. Blobel & T. Schliesser. Stuttgart: Gustav Fischer.
  12. Kulyashova, L. B., Tseneva, G. Ya. & Buinevich, Yu. B. ( 1997;). The role of the outer-membrane antigens of Yersinia pseudotuberculosis in the pathogenesis and diagnosis of pseudotuberculosis. Zh Mikrobiol Epidemiol Immunobiol, 14–18 (in Russian).
  13. Laemmli, U. K. ( 1970;). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  14. Nandi, B., Nandy, R. K., Mukhopadhyay, S., Nair, G. B., Shimada, T. & Ghose, A. C. ( 2000;). Rapid method for species-specific identification of Vibrio cholerae using primers targeted to the gene of outer membrane protein OmpW. J Clin Microbiol 38, 4145–4151.
    [Google Scholar]
  15. Nedashkovskaya, E. P., Timchenko, N. F., Besednov, A. L. & Vertiev, Yu. V. ( 1995;). Thermostable Yersinia pseudotuberculosis toxin: its isolation, purification and the characteristics of its properties. Zh Mikrobiol Epidemiol Immunobiol, 5–9 (in Russian).
  16. Novikova, O. D., Vostrikova, O. P., Portnyagina, O. Y., Khomenko, V. A., Solov'eva, T. F. & Ovodov, Y. S. ( 1996;). Antigenic properties of outer membrane porins in Yersinia genus. Biull Eksp Biol Med 121, 657–660 (in Russian).
  17. Ogasawara, M., Kobayashi, S., Arai, S., Laheji, K., Hill, J. L., Kono, D. H. & Yu, D. T. ( 1985;). A heat-modifiable outer membrane protein carries an antigen specific for the species Yersinia enterocolitica and Yersinia pseudotuberculosis. J Immunol 135, 1430–1436.
    [Google Scholar]
  18. Ovodov, Y. S., Gorshkova, R. P., Tomshich, S. V., Komandrova, N. A., Zubkov, V. A., Kalmykova, E. N. & Isakov, V. V. ( 1992;). Chemical and immunochemical studies on lipopolysaccharides of some Yersinia species.A review of some recent investigations. J Carbohydr Chem 11, 21–35.[CrossRef]
    [Google Scholar]
  19. Perry, R. D. & Fetherston, J. D. ( 1997;). Yersinia pestis – etiologic agent of plague. Clin Microbiol Rev 10, 35–66.
    [Google Scholar]
  20. Pokrovsky, V. I. & Posdeev, O. K. ( 1999;). Medical Microbiology, pp. 21–145. Moscow: GEOTAR.
  21. Skurnik, M. ( 1999;). Molecular genetics of Yersinia lipopolysaccharide. In Genetics of Bacterial Polysaccharides, pp. 23–51. Edited by J. B. Goldberg. Boca Raton, FL: CRC Press.
  22. Skurnik, M., Peippo, A. & Ervela, E. ( 2000;). Characterization of the O-antigen gene clusters of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Yersinia pestis shows that the plague bacillus is most closely related to and has evolved from Y.pseudotuberculosis serotype O:1b. Mol Microbiol 37, 316–330.[CrossRef]
    [Google Scholar]
  23. Solov'eva, T. F., Bakholdina, S. I., Yermak, I. M., Khomenko, V. A., Fedoreyeva, L. I., Novikova, O. D., Frolova, G. M., Likhatskaya, G. N. & Ovodov, Yu. S. ( 1990;). The protein moiety of endotoxin from Yersinia pseudotuberculosis: general characterization. Biorganic Chem 16, 1301–1309 (in Russian).
  24. Somov, G. P., Pokrovsky, V. I. & Besednova, N. N. (editors) ( 1990;). Pseudotuberculosis, pp. 31–38. Moscow: Medicina.
  25. Zollinger, W. D. & Mandrell, R. E. ( 1977;). Outer-membrane protein and lipopolysaccharide serotyping of Neisseria meningitidis by inhibition of a solid-phase radioimmunoassay. Infect Immun 18, 424–433.
    [Google Scholar]
  26. Zollinger, W. D. & Mandrell, R. E. ( 1980;). Type-specific antigens of group A Neisseria meningitidis: lipopolysaccharide and heat-modifiable outer membrane proteins. Infect Immun 28, 451–458.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05036-0
Loading
/content/journal/jmm/10.1099/jmm.0.05036-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error