1887

Abstract

is a human-adapted commensal and pathogen that can cause mucosal infections such as sinusitis, otitis media and bronchitis. Certain strains also cause bacteraemia and meningitis. Clinical isolates are genetically heterogeneous and are often recalcitrant to standard genetic manipulation. strain Rd KW20 has traditionally been considered avirulent, since it does not survive in the bloodstream of animals, is readily killed by normal adult human sera and cannot colonize the nasopharynx of infant rats. The purpose of this study was to determine whether Rd KW20 could be used in certain infection models. It is shown here that strain Rd KW20 can invade certain human epithelial cell lines grown either as monolayers or as differentiated epithelium at the air–liquid interface. In addition, Rd KW20 can invade a monolayer of immortalized human brain microvascular endothelial cells. Finally, this strain can replicate and survive in human bronchial xenografts for up to 3 weeks. The complete genomic sequence of Rd KW20 is available and it is readily amenable to genetic manipulation. These properties and the results reported here indicate that this strain is a viable alternative to the use of clinical isolates for the investigation of virulence.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05025-0
2003-04-01
2019-08-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/4/277.html?itemId=/content/journal/jmm/10.1099/jmm.0.05025-0&mimeType=html&fmt=ahah

References

  1. Cohn, L. A., Weber, A., Phillips, T., Lory, S., Kaplan, M. & Smith, A. ( 2001;). Pseudomonas aeruginosa infection of respiratory epithelium in a cystic fibrosis xenograft model. J Infect Dis 183, 919–927.[CrossRef]
    [Google Scholar]
  2. Fleischmann, R. D., Adams, M. D., White, O. & 29 other authors ( 1995;). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512.[CrossRef]
    [Google Scholar]
  3. Forsgren, J., Samuelson, A., Ahlin, A., Jonasson, J., Rynnel-Dagoo, B. & Lindberg, A. ( 1994;). Haemophilus influenzae resides and multiplies intracellularly in human adenoid tissue as demonstrated by in situ hybridization and bacterial viability assay. Infect Immun 62, 673–679.
    [Google Scholar]
  4. Gilsdorf, J. R., Tucci, M. & Marrs, C. F. ( 1996;). Role of pili in Haemophilus influenzae adherence to, and internalization by, respiratory cells. Pediatr Res 39, 343–348.
    [Google Scholar]
  5. Gray, T. E., Guzman, K., Davis, C. W., Abdullah, L. H. & Nettesheim, P. ( 1996;). Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells. Am J Respir Cell Mol Biol 14, 104–112.[CrossRef]
    [Google Scholar]
  6. Kooistra, J., van Boxel, T. & Venema, G. ( 1983;). Characterization of a conditionally transformation-deficient mutant of Haemophilus influenzae that carries a mutation in the rec-1 gene region. J Bacteriol 153, 852–860.
    [Google Scholar]
  7. Martin, K., Morlin, G., Smith, A., Nordyke, A., Eisenstark, A. & Golomb, M. ( 1998;). The tryptophanase gene cluster of Haemophilus influenzae type b: evidence for horizontal gene transfer. J Bacteriol 180, 107–118.
    [Google Scholar]
  8. McCarthy, D. ( 1989;). Cloning of the rec-2 locus of Haemophilus influenzae. Gene 75, 135–143.[CrossRef]
    [Google Scholar]
  9. Morlin, G., Smith, A., Bradley, K., Kuwajima, V. & Golomb, M. (2002). Genome size as an adaptation: small and large genome variants coexist in natural populations of Haemophilus influenzae. In Abstracts of the 102nd General Meeting of the American Society for Microbiology, Salt Lake City, UT, 19–23 May 2002, abstract 63208.
  10. Murphy, T. F. & Apicella, M. A. ( 1987;). Nontypable Haemophilus influenzae: a review of clinical aspects, surface antigens, and the human immune response to infection. Rev Infect Dis 9, 1–15.[CrossRef]
    [Google Scholar]
  11. Nizet, V., Colina, K. F., Almquist, J. R., Rubens, C. E. & Smith, A. L. ( 1996;). A virulent nonencapsulated Haemophilus influenzae. J Infect Dis 173, 180–186.[CrossRef]
    [Google Scholar]
  12. Roberts, M., Stull, T. L. & Smith, A. L. ( 1981;). Comparative virulence of Haemophilus influenzae with a type b or type d capsule. Infect Immun 32, 518–524.
    [Google Scholar]
  13. Sell, S. H. ( 1970;). The clinical importance of Haemophilus influenzae infections in children. Pediatr Clin North Am 17, 415–426.
    [Google Scholar]
  14. Setlow, J. K., Brown, D. C., Boling, M. E., Mattingly, A. & Gordon, M. P. ( 1968;). Repair of deoxyribonucleic acid in Haemophilus influenzae. I. X-ray sensitivity of ultraviolet-sensitive mutants and their behavior as hosts to ultraviolet-irradiated bacteriophage and transforming deoxyribonucleic acid. J Bacteriol 95, 546–558.
    [Google Scholar]
  15. Setlow, J. K., Boling, M. E., Beattie, K. L. & Kimball, R. F. ( 1972;). A complex of recombination and repair genes in Haemophilus influenzae. J Mol Biol 68, 361–378.[CrossRef]
    [Google Scholar]
  16. Smith, A. L., Smith, D. H., Averill, D. R., Jr, Marino, J. & Moxon, E. R. ( 1973;). Production of Haemophilus influenzae b meningitis in infant rats by intraperitoneal inoculation. Infect Immun 8, 278–290.
    [Google Scholar]
  17. St Geme, J. W., III ( 2002;). Molecular and cellular determinants of non-typeable Haemophilus influenzae adherence and invasion. Cell Microbiol 4, 191–200.[CrossRef]
    [Google Scholar]
  18. Stins, M. F., Badger, J. & Kim, K. S. ( 2001;). Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb Pathog 30, 19–28.[CrossRef]
    [Google Scholar]
  19. van Schilfgaarde, M., van Ulsen, P., van der Steeg, W., Winter, V., Eijk, P., Everts, V., Dankert, J. & van Alphen, L. ( 2000;). Cloning of genes of nontypeable Haemophilus influenzae involved in penetration between human lung epithelial cells. Infect Immun 68, 4616–4623.[CrossRef]
    [Google Scholar]
  20. van Ulsen, P., van Schilfgaarde, M., Dankert, J., Jansen, H. & van Alphen, L. ( 2002;). Genes of non-typeable Haemophilus influenzae expressed during interaction with human epithelial cell lines. Mol Microbiol 45, 485–500.[CrossRef]
    [Google Scholar]
  21. Virji, M., Käyhty, H., Ferguson, D. J. P., Alexandrescu, C. & Moxon, E. R. ( 1992;). Interactions of Haemophilus influenzae with human endothelial cells in vitro. J Infect Dis 165 (Suppl. 1), S115–S116.[CrossRef]
    [Google Scholar]
  22. Wilcox, K. W. & Smith, H. O. ( 1975;). Isolation and characterization of mutants of Haemophilus influenzae deficient in an adenosine 5′-triphosphate-dependent deoxyribonuclease activity. J Bacteriol 122, 443–453.
    [Google Scholar]
  23. Zeitlin, P. L., Lu, L., Rhim, J., Cutting, G., Stetten, G., Kieffer, K. A., Craig, R. & Guggino, W. B. ( 1991;). A cystic fibrosis bronchial epithelial cell line: immortalization by adeno-12-SV40 infection. Am J Respir Cell Mol Biol 4, 313–319.[CrossRef]
    [Google Scholar]
  24. Zwahlen, A., Kroll, J. S., Rubin, L. G. & Moxon, E. R. ( 1989;). The molecular basis of pathogenicity in Haemophilus influenzae: comparative virulence of genetically-related capsular transformants and correlation with changes at the capsulation locus cap. Microb Pathog 7, 225–235.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05025-0
Loading
/content/journal/jmm/10.1099/jmm.0.05025-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error