1887

Abstract

Swarming by involves differentiation of typical short vegetative rods into filamentous hyper-flagellated swarm cells that undergo cycles of rapid and co-ordinated population migration across surfaces and exhibit high levels of virulence gene expression. RsmA (repressor of secondary metabolites) and CsrA, its homologue in , control many phenotypic traits, such as motility and pathogenesis in species, glycogen biosynthesis, cell size and biofilm formation in and swarming motility in . To investigate the role of RsmA in , the gene from (hereafter referred to as ) was cloned. RsmA showed high sequence similarity to CsrA and RsmA cloned from subsp. , , and and could complement an mutant in glycogen synthesis. A low-copy-number plasmid carrying expressed from its native promoter caused suppression of swarming motility and expression of virulence factors in . mRNA stability assays suggested that RsmA inhibited virulence factor expression through promoting mRNA degradation. RsmA homologues cloned from and subsp. could also inhibit swarming and virulence factor expression in .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05024-0
2003-01-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/1/19.html?itemId=/content/journal/jmm/10.1099/jmm.0.05024-0&mimeType=html&fmt=ahah

References

  1. Allison C, Hughes C. 1991; Bacterial swarming: an example of prokaryotic differentiation and multicellular behaviour. Sci Prog 75:403–422
    [Google Scholar]
  2. Allison C, Lai H. C, Hughes C. 1992; Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis . Mol Microbiol 6:1583–1591 [CrossRef]
    [Google Scholar]
  3. Allison C, Lai H. C, Gygi D, Hughes C. 1993; Cell differentiation of Proteus mirabilis is initiated by glutamine, a specific chemoattractant for swarming cells. Mol Microbiol 8:53–60 [CrossRef]
    [Google Scholar]
  4. Altier C, Suyemoto M, Lawhon S. D. 2000; Regulation of Salmonella enterica serovar Typhimurium invasion genes by csrA . Infect Immun 68:6790–6797 [CrossRef]
    [Google Scholar]
  5. Ang S, Horng Y. T, Shu J. C. 7 other authors 2001; The role of RsmA in the regulation of swarming motility in Serratia marcescens . J Biomed Sci 8:160–169
    [Google Scholar]
  6. Belas R, Erskine D, Flaherty D. 1991; Proteus mirabilis mutants defective in swarmer cell differentiation and multicellular behavior. J Bacteriol 173:6279–6288
    [Google Scholar]
  7. Belas R, Goldman M, Ashliman K. 1995; Genetic analysis of Proteus mirabilis mutants defective in swarmer cell elongation. J Bacteriol 177:823–828
    [Google Scholar]
  8. Blumer C, Heeb S, Pessi G, Haas D. 1999; Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci U S A 96:14073–14078 [CrossRef]
    [Google Scholar]
  9. Chatterjee A, Cui Y, Liu Y, Dumenyo C. K, Chatterjee A. K. 1995; Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N -(3-oxohexanoyl)-l-homoserine lactone. Appl Environ Microbiol 61:1959–1967
    [Google Scholar]
  10. Cotter P. A, Miller J. F. 1998; In vivo and ex vivo regulation of bacterial virulence gene expression. Curr Opin Microbiol 1:17–26 [CrossRef]
    [Google Scholar]
  11. Cui Y, Chatterjee A, Liu Y, Dumenyo C. K, Chatterjee A. K. 1995; Identification of a global repressor gene, rsmA , of Erwinia carotovora subsp. carotovora that controls extracellular enzymes, N -(3-oxohexanoyl)-l-homoserine lactone, and pathogenicity in soft-rotting Erwinia spp. J Bacteriol 177:5108–5115
    [Google Scholar]
  12. Cui Y, Mukherjee A, Dumenyo C. K, Liu Y, Chatterjee A. K. 1999; rsmC of the soft-rotting bacterium Erwinia carotovora subsp. carotovora negatively controls extracellular enzyme and harpinEcc production and virulence by modulating levels of regulatory RNA ( rsmB ) and RNA-binding protein (RsmA). J Bacteriol 181:6042–6052
    [Google Scholar]
  13. Cui Y, Chatterjee A, Chatterjee A. K. 2001; Effects of the two-component system comprising GacA and GacS of Erwinia carotovora subsp. carotovora on the production of global regulatory rsmB RNA, extracellular enzymes, and harpinEcc . Mol Plant Microbe Interact 14:516–526 [CrossRef]
    [Google Scholar]
  14. Devereux J, Haeberli P, Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395 [CrossRef]
    [Google Scholar]
  15. Eberl L, Molin S, Givskov M. 1999; Surface motility of Serratia liquefaciens MG1. J Bacteriol 181:1703–1712
    [Google Scholar]
  16. Fleischmann R. D, Adams M. D, White O. 37 other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512 [CrossRef]
    [Google Scholar]
  17. Fraser G. M, Hughes C. 1999; Swarming motility. Curr Opin Microbiol 2:630–635 [CrossRef]
    [Google Scholar]
  18. Fraser G. M, Bennett J. C, Hughes C. 1999; Substrate-specific binding of hook-associated proteins by FlgN and FliT, putative chaperones for flagellum assembly. Mol Microbiol 32:569–580 [CrossRef]
    [Google Scholar]
  19. Gaisser S, Hughes C. 1997; A locus coding for putative non-ribosomal peptide/polyketide synthase functions is mutated in a swarming-defective Proteus mirabilis strain. Mol Gen Genet 253:415–427 [CrossRef]
    [Google Scholar]
  20. Gibson S. A. W, Macfarlane G. T. 1988; Characterization of proteases formed by Bacteroides fragilis . J Gen Microbiol 134:2231–2240
    [Google Scholar]
  21. Givskov M, Eberl L, Molin S. 1997; Control of exoenzyme production, motility and cell differentiation in Serratia liquefaciens . FEMS Microbiol Lett 148:115–122 [CrossRef]
    [Google Scholar]
  22. Gygi D, Bailey M. J, Allison C, Hughes C. 1995a; Requirement for FlhA in flagella assembly and swarm-cell differentiation by Proteus mirabilis . Mol Microbiol 15:761–769
    [Google Scholar]
  23. Gygi D, Rahman M. M, Lai H. C, Carlson R, Guard-Petter J, Hughes C. 1995b; A cell-surface polysaccharide that facilitates rapid population migration by differentiated swarm cells of Proteus mirabilis . Mol Microbiol 17:1167–1175 [CrossRef]
    [Google Scholar]
  24. Gygi D, Fraser G, Dufour A, Hughes C. 1997; A motile but non-swarming mutant of Proteus mirabilis lacks FlgN, a facilitator of flagella filament assembly. Mol Microbiol 25:597–604 [CrossRef]
    [Google Scholar]
  25. Harshey R. M. 1994; Bees aren't the only ones: swarming in gram-negative bacteria. Mol Microbiol 13:389–394 [CrossRef]
    [Google Scholar]
  26. Harshey R. M, Matsuyama T. 1994; Dimorphic transition in Escherichia coli and Salmonella typhimurium : surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci U S A 91:8631–8635 [CrossRef]
    [Google Scholar]
  27. Hay N. A, Tipper D. J, Gygi D, Hughes C. 1999; A novel membrane protein influencing cell shape and multicellular swarming of Proteus mirabilis . J Bacteriol 181:2008–2016
    [Google Scholar]
  28. Jones B. D, Mobley H. L. T. 1988; Proteus mirabilis urease: genetic organization, regulation, and expression of structural genes. J Bacteriol 170:3342–3349
    [Google Scholar]
  29. Koronakis V, Cross M, Senior B, Koronakis E, Hughes C. 1987; The secreted hemolysins of Proteus mirabilis , Proteus vulgaris , and Morganella morganii are genetically related to each other and to the alpha-hemolysin of Escherichia coli . J Bacteriol 169:1509–1515
    [Google Scholar]
  30. Liaw S.-J, Lai H.-C, Ho S.-W, Luh K.-T, Wang W.-B. 2000; Inhibition of virulence factor expression and swarming differentiation in Proteus mirabilis by p -nitrophenylglycerol. J Med Microbiol 49:725–731
    [Google Scholar]
  31. Liaw S.-J, Lai H.-C, Ho S.-W, Luh K.-T, Wang W.-B. 2001; Characterisation of p -nitrophenylglycerol-resistant Proteus mirabilis super-swarming mutants. J Med Microbiol 50:1039–1048
    [Google Scholar]
  32. Link A. J, Phillips D, Church G. M. 1997; Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli : application to open reading frame characterization. J Bacteriol 179:6228–6237
    [Google Scholar]
  33. Liu M. Y, Romeo T. 1997; The global regulator CsrA of Escherichia coli is a specific mRNA-binding protein. J Bacteriol 179:4639–4642
    [Google Scholar]
  34. Liu M. Y, Yang H, Romeo T. 1995; The product of the pleiotropic Escherichia coli gene csrA modulates glycogen biosynthesis via effects on mRNA stability. J Bacteriol 177:2663–2672
    [Google Scholar]
  35. Liu M. Y, Gui G, Wei B, Preston J. F III, Oakford L, Yuksel U, Giedroc D. P, Romeo T. 1997; The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli . J Biol Chem 272:17502–17510 [CrossRef]
    [Google Scholar]
  36. Liu Y, Cui Y, Mukherjee A, Chatterjee A. K. 1998; Characterization of a novel RNA regulator of Erwinia carotovora ssp. carotovora that controls production of extracellular enzymes and secondary metabolites. Mol Microbiol 29:219–234 [CrossRef]
    [Google Scholar]
  37. Magni C, Marini P, de Mendoza D. 1995; Extraction of RNA from gram-positive bacteria. Biotechniques 19:880–884
    [Google Scholar]
  38. Mirel D. B, Chamberlin M. J. 1989; The Bacillus subtilis flagellin gene ( hag ) is transcribed by the σ28 form of RNA polymerase. J Bacteriol 171:3095–3101
    [Google Scholar]
  39. Mukherjee A, Cui Y, Liu Y, Dumenyo C. K, Chatterjee A. K. 1996; Global regulation in Erwinia species by Erwinia carotovora rsmA , a homologue of Escherichia coli csrA : repression of secondary metabolites, pathogenicity and hypersensitive reaction. Microbiology 142:427–434 [CrossRef]
    [Google Scholar]
  40. Mukherjee A, Cui Y, Ma W, Liu Y, Ishihama A, Eisenstark A, Chatterjee A. K. 1998; RpoS (σ-S) controls expression of rsmA , a global regulator of secondary metabolites, harpin, and extracellular proteins in Erwinia carotovora . J Bacteriol 180:3629–3634
    [Google Scholar]
  41. Rauprich O, Matsushita M, Weijer C. J, Siegert F, Esipov S. E, Shapiro J. A. 1996; Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol 178:6525–6538
    [Google Scholar]
  42. Romeo T. 1998; Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29:1321–1330 [CrossRef]
    [Google Scholar]
  43. Romeo T, Gong M, Liu M. Y, Brun-Zinkernagel A. M. 1993; Identification and molecular characterization of csrA , a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J Bacteriol 175:4744–4755
    [Google Scholar]
  44. Siomi H, Choi M, Siomi M. C, Nussbaum R. L, Dreyfuss G. 1994; Essential role for KH domains in RNA binding: impaired RNA binding by a mutation in the KH domain of FMR1 that causes fragile X syndrome. Cell 77:33–39 [CrossRef]
    [Google Scholar]
  45. Uphoff T. S, Welch R. A. 1990; Nucleotide sequencing of the Proteus mirabilis calcium-independent hemolysin genes ( hpmA and hpmB ) reveals sequence similarity with the Serratia marcescens hemolysin genes ( shlA and shlB ).. J Bacteriol 172:1206–1216
    [Google Scholar]
  46. Warren J. W, Tenney J. H, Hoopes J. M, Muncie H. L, Anthony W. C. 1982; A prospective microbiologic study of bacteriuria in patients with chronic indwelling urethral catheters. J Infect Dis 146:719–723 [CrossRef]
    [Google Scholar]
  47. Wei B. L, Brun-Zinkernagel A. M, Simecka J. W, Prüß B. M, Babitzke P, Romeo T. 2001; Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli . Mol Microbiol 40:245–256 [CrossRef]
    [Google Scholar]
  48. White D, Hart M. E, Romeo T. 1996; Phylogenetic distribution of the global regulatory gene csrA among eubacteria. Gene 182:221–223 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05024-0
Loading
/content/journal/jmm/10.1099/jmm.0.05024-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error