1887

Abstract

Swarming by involves differentiation of typical short vegetative rods into filamentous hyper-flagellated swarm cells that undergo cycles of rapid and co-ordinated population migration across surfaces and exhibit high levels of virulence gene expression. RsmA (repressor of secondary metabolites) and CsrA, its homologue in , control many phenotypic traits, such as motility and pathogenesis in species, glycogen biosynthesis, cell size and biofilm formation in and swarming motility in . To investigate the role of RsmA in , the gene from (hereafter referred to as ) was cloned. RsmA showed high sequence similarity to CsrA and RsmA cloned from subsp. , , and and could complement an mutant in glycogen synthesis. A low-copy-number plasmid carrying expressed from its native promoter caused suppression of swarming motility and expression of virulence factors in . mRNA stability assays suggested that RsmA inhibited virulence factor expression through promoting mRNA degradation. RsmA homologues cloned from and subsp. could also inhibit swarming and virulence factor expression in .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05024-0
2003-01-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/1/19.html?itemId=/content/journal/jmm/10.1099/jmm.0.05024-0&mimeType=html&fmt=ahah

References

  1. Allison, C. & Hughes, C. ( 1991;). Bacterial swarming: an example of prokaryotic differentiation and multicellular behaviour. Sci Prog 75, 403–422.
    [Google Scholar]
  2. Allison, C., Lai, H. C. & Hughes, C. ( 1992;). Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis. Mol Microbiol 6, 1583–1591.[CrossRef]
    [Google Scholar]
  3. Allison, C., Lai, H. C., Gygi, D. & Hughes, C. ( 1993;). Cell differentiation of Proteus mirabilis is initiated by glutamine, a specific chemoattractant for swarming cells. Mol Microbiol 8, 53–60.[CrossRef]
    [Google Scholar]
  4. Altier, C., Suyemoto, M. & Lawhon, S. D. ( 2000;). Regulation of Salmonella enterica serovar Typhimurium invasion genes by csrA. Infect Immun 68, 6790–6797.[CrossRef]
    [Google Scholar]
  5. Ang, S., Horng, Y. T., Shu, J. C. & 7 other authors ( 2001;). The role of RsmA in the regulation of swarming motility in Serratia marcescens. J Biomed Sci 8, 160–169.
    [Google Scholar]
  6. Belas, R., Erskine, D. & Flaherty, D. ( 1991;). Proteus mirabilis mutants defective in swarmer cell differentiation and multicellular behavior. J Bacteriol 173, 6279–6288.
    [Google Scholar]
  7. Belas, R., Goldman, M. & Ashliman, K. ( 1995;). Genetic analysis of Proteus mirabilis mutants defective in swarmer cell elongation. J Bacteriol 177, 823–828.
    [Google Scholar]
  8. Blumer, C., Heeb, S., Pessi, G. & Haas, D. ( 1999;). Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci U S A 96, 14073–14078.[CrossRef]
    [Google Scholar]
  9. Chatterjee, A., Cui, Y., Liu, Y., Dumenyo, C. K. & Chatterjee, A. K. ( 1995;). Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-l-homoserine lactone. Appl Environ Microbiol 61, 1959–1967.
    [Google Scholar]
  10. Cotter, P. A. & Miller, J. F. ( 1998;). In vivo and ex vivo regulation of bacterial virulence gene expression. Curr Opin Microbiol 1, 17–26.[CrossRef]
    [Google Scholar]
  11. Cui, Y., Chatterjee, A., Liu, Y., Dumenyo, C. K. & Chatterjee, A. K. ( 1995;). Identification of a global repressor gene, rsmA, of Erwinia carotovora subsp. carotovora that controls extracellular enzymes, N-(3-oxohexanoyl)-l-homoserine lactone, and pathogenicity in soft-rotting Erwinia spp. J Bacteriol 177, 5108–5115.
    [Google Scholar]
  12. Cui, Y., Mukherjee, A., Dumenyo, C. K., Liu, Y. & Chatterjee, A. K. ( 1999;). rsmC of the soft-rotting bacterium Erwinia carotovora subsp. carotovora negatively controls extracellular enzyme and harpinEcc production and virulence by modulating levels of regulatory RNA (rsmB) and RNA-binding protein (RsmA). J Bacteriol 181, 6042–6052.
    [Google Scholar]
  13. Cui, Y., Chatterjee, A. & Chatterjee, A. K. ( 2001;). Effects of the two-component system comprising GacA and GacS of Erwinia carotovora subsp. carotovora on the production of global regulatory rsmB RNA, extracellular enzymes, and harpinEcc. Mol Plant Microbe Interact 14, 516–526.[CrossRef]
    [Google Scholar]
  14. Devereux, J., Haeberli, P. & Smithies, O. ( 1984;). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387–395.[CrossRef]
    [Google Scholar]
  15. Eberl, L., Molin, S. & Givskov, M. ( 1999;). Surface motility of Serratia liquefaciens MG1. J Bacteriol 181, 1703–1712.
    [Google Scholar]
  16. Fleischmann, R. D., Adams, M. D., White, O. & 37 other authors ( 1995;). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512.[CrossRef]
    [Google Scholar]
  17. Fraser, G. M. & Hughes, C. ( 1999;). Swarming motility. Curr Opin Microbiol 2, 630–635.[CrossRef]
    [Google Scholar]
  18. Fraser, G. M., Bennett, J. C. & Hughes, C. ( 1999;). Substrate-specific binding of hook-associated proteins by FlgN and FliT, putative chaperones for flagellum assembly. Mol Microbiol 32, 569–580.[CrossRef]
    [Google Scholar]
  19. Gaisser, S. & Hughes, C. ( 1997;). A locus coding for putative non-ribosomal peptide/polyketide synthase functions is mutated in a swarming-defective Proteus mirabilis strain. Mol Gen Genet 253, 415–427.[CrossRef]
    [Google Scholar]
  20. Gibson, S. A. W. & Macfarlane, G. T. ( 1988;). Characterization of proteases formed by Bacteroides fragilis. J Gen Microbiol 134, 2231–2240.
    [Google Scholar]
  21. Givskov, M., Eberl, L. & Molin, S. ( 1997;). Control of exoenzyme production, motility and cell differentiation in Serratia liquefaciens. FEMS Microbiol Lett 148, 115–122.[CrossRef]
    [Google Scholar]
  22. Gygi, D., Bailey, M. J., Allison, C. & Hughes, C. ( 1995;a). Requirement for FlhA in flagella assembly and swarm-cell differentiation by Proteus mirabilis. Mol Microbiol 15, 761–769.
    [Google Scholar]
  23. Gygi, D., Rahman, M. M., Lai, H. C., Carlson, R., Guard-Petter, J. & Hughes, C. ( 1995;b). A cell-surface polysaccharide that facilitates rapid population migration by differentiated swarm cells of Proteus mirabilis. Mol Microbiol 17, 1167–1175.[CrossRef]
    [Google Scholar]
  24. Gygi, D., Fraser, G., Dufour, A. & Hughes, C. ( 1997;). A motile but non-swarming mutant of Proteus mirabilis lacks FlgN, a facilitator of flagella filament assembly. Mol Microbiol 25, 597–604.[CrossRef]
    [Google Scholar]
  25. Harshey, R. M. ( 1994;). Bees aren't the only ones: swarming in gram-negative bacteria. Mol Microbiol 13, 389–394.[CrossRef]
    [Google Scholar]
  26. Harshey, R. M. & Matsuyama, T. ( 1994;). Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci U S A 91, 8631–8635.[CrossRef]
    [Google Scholar]
  27. Hay, N. A., Tipper, D. J., Gygi, D. & Hughes, C. ( 1999;). A novel membrane protein influencing cell shape and multicellular swarming of Proteus mirabilis. J Bacteriol 181, 2008–2016.
    [Google Scholar]
  28. Jones, B. D. & Mobley, H. L. T. ( 1988;). Proteus mirabilis urease: genetic organization, regulation, and expression of structural genes. J Bacteriol 170, 3342–3349.
    [Google Scholar]
  29. Koronakis, V., Cross, M., Senior, B., Koronakis, E. & Hughes, C. ( 1987;). The secreted hemolysins of Proteus mirabilis, Proteus vulgaris, and Morganella morganii are genetically related to each other and to the alpha-hemolysin of Escherichia coli. J Bacteriol 169, 1509–1515.
    [Google Scholar]
  30. Liaw, S.-J., Lai, H.-C., Ho, S.-W., Luh, K.-T. & Wang, W.-B. ( 2000;). Inhibition of virulence factor expression and swarming differentiation in Proteus mirabilis by p-nitrophenylglycerol. J Med Microbiol 49, 725–731.
    [Google Scholar]
  31. Liaw, S.-J., Lai, H.-C., Ho, S.-W., Luh, K.-T. & Wang, W.-B. ( 2001;). Characterisation of p-nitrophenylglycerol-resistant Proteus mirabilis super-swarming mutants. J Med Microbiol 50, 1039–1048.
    [Google Scholar]
  32. Link, A. J., Phillips, D. & Church, G. M. ( 1997;). Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179, 6228–6237.
    [Google Scholar]
  33. Liu, M. Y. & Romeo, T. ( 1997;). The global regulator CsrA of Escherichia coli is a specific mRNA-binding protein. J Bacteriol 179, 4639–4642.
    [Google Scholar]
  34. Liu, M. Y., Yang, H. & Romeo, T. ( 1995;). The product of the pleiotropic Escherichia coli gene csrA modulates glycogen biosynthesis via effects on mRNA stability. J Bacteriol 177, 2663–2672.
    [Google Scholar]
  35. Liu, M. Y., Gui, G., Wei, B., Preston, J. F., III, Oakford, L., Yuksel, U., Giedroc, D. P. & Romeo, T. ( 1997;). The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem 272, 17502–17510.[CrossRef]
    [Google Scholar]
  36. Liu, Y., Cui, Y., Mukherjee, A. & Chatterjee, A. K. ( 1998;). Characterization of a novel RNA regulator of Erwinia carotovora ssp. carotovora that controls production of extracellular enzymes and secondary metabolites. Mol Microbiol 29, 219–234.[CrossRef]
    [Google Scholar]
  37. Magni, C., Marini, P. & de Mendoza, D. ( 1995;). Extraction of RNA from gram-positive bacteria. Biotechniques 19, 880–884.
    [Google Scholar]
  38. Mirel, D. B. & Chamberlin, M. J. ( 1989;). The Bacillus subtilis flagellin gene (hag) is transcribed by the σ28 form of RNA polymerase. J Bacteriol 171, 3095–3101.
    [Google Scholar]
  39. Mukherjee, A., Cui, Y., Liu, Y., Dumenyo, C. K. & Chatterjee, A. K. ( 1996;). Global regulation in Erwinia species by Erwinia carotovora rsmA, a homologue of Escherichia coli csrA: repression of secondary metabolites, pathogenicity and hypersensitive reaction. Microbiology 142, 427–434.[CrossRef]
    [Google Scholar]
  40. Mukherjee, A., Cui, Y., Ma, W., Liu, Y., Ishihama, A., Eisenstark, A. & Chatterjee, A. K. ( 1998;). RpoS (σ-S) controls expression of rsmA, a global regulator of secondary metabolites, harpin, and extracellular proteins in Erwinia carotovora. J Bacteriol 180, 3629–3634.
    [Google Scholar]
  41. Rauprich, O., Matsushita, M., Weijer, C. J., Siegert, F., Esipov, S. E. & Shapiro, J. A. ( 1996;). Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol 178, 6525–6538.
    [Google Scholar]
  42. Romeo, T. ( 1998;). Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29, 1321–1330.[CrossRef]
    [Google Scholar]
  43. Romeo, T., Gong, M., Liu, M. Y. & Brun-Zinkernagel, A. M. ( 1993;). Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J Bacteriol 175, 4744–4755.
    [Google Scholar]
  44. Siomi, H., Choi, M., Siomi, M. C., Nussbaum, R. L. & Dreyfuss, G. ( 1994;). Essential role for KH domains in RNA binding: impaired RNA binding by a mutation in the KH domain of FMR1 that causes fragile X syndrome. Cell 77, 33–39.[CrossRef]
    [Google Scholar]
  45. Uphoff, T. S. & Welch, R. A. ( 1990;). Nucleotide sequencing of the Proteus mirabilis calcium-independent hemolysin genes (hpmA and hpmB) reveals sequence similarity with the Serratia marcescens hemolysin genes (shlA and shlB). J Bacteriol 172, 1206–1216.
    [Google Scholar]
  46. Warren, J. W., Tenney, J. H., Hoopes, J. M., Muncie, H. L. & Anthony, W. C. ( 1982;). A prospective microbiologic study of bacteriuria in patients with chronic indwelling urethral catheters. J Infect Dis 146, 719–723.[CrossRef]
    [Google Scholar]
  47. Wei, B. L., Brun-Zinkernagel, A. M., Simecka, J. W., Prüß, B. M., Babitzke, P. & Romeo, T. ( 2001;). Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol 40, 245–256.[CrossRef]
    [Google Scholar]
  48. White, D., Hart, M. E. & Romeo, T. ( 1996;). Phylogenetic distribution of the global regulatory gene csrA among eubacteria. Gene 182, 221–223.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05024-0
Loading
/content/journal/jmm/10.1099/jmm.0.05024-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error