1887

Abstract

is the most pathogenic and one of the most common Gram-positive anaerobic cocci found in human clinical specimens. The organism has been isolated in pure culture from a range of serious infections, including meningitis and endocarditis. However, isolation of from the oral cavity has rarely been attempted. Identification of in clinical specimens is reliant upon microbiological culture and biochemical methods, which often give ambiguous results. The aim of this study was to develop a PCR assay for the specific detection of in oral clinical specimens. PCR primers specific for DNA were derived by comparison of 16S rRNA gene sequences and selection of primers that demonstrated specificity at their 3′ ends for . PCR positivity for DNA was indicated by the amplification of a 553 bp product. The PCR assay was then used to attempt detection of DNA in subgingival plaque samples from adult periodontitis patients and pus aspirates from subjects with acute dento-alveolar abscesses. The PCR assay was demonstrated to be highly specific for DNA, since no PCR products were obtained when genomic DNA from a wide range of other oral bacteria, including closely related species, was used in the PCR assay. Confirmation of specific amplification of DNA was obtained by digestion of PCR products with the restriction endonuclease I, which gives a unique restriction profile for . Of the 33 subgingival plaque samples analysed, 2 (6 %) were positive for DNA. None of the 60 pus aspirates analysed was positive for DNA. It is concluded that is not a major pathogen in adult periodontitis or dento-alveolar abscesses. The PCR assay provides a more rapid, specific and sensitive alternative to conventional methods for identification of in clinical specimens.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05004-0
2003-04-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/4/309.html?itemId=/content/journal/jmm/10.1099/jmm.0.05004-0&mimeType=html&fmt=ahah

References

  1. Bourgault, A. M., Rosenblatt, J. E. & Fitzgerald, R. H. ( 1980;). Peptococcus magnus: a significant human pathogen. Ann Intern Med 93, 244–248.[CrossRef]
    [Google Scholar]
  2. Brook, I. ( 1988;). Recovery of anaerobic bacteria from clinical specimens in 12 years at two military hospitals. J Clin Microbiol 26, 1181–1188.
    [Google Scholar]
  3. Brook, I. ( 1994;). Peptostreptococcal infection in children. Scand J Infect Dis 26, 503–510.[CrossRef]
    [Google Scholar]
  4. Brown, M. A., Greene, J. N., Sandin, R. L. & Vincent, A. L. ( 1994;). Anaerobic meningitis caused by Peptostreptococcus magnus after head and neck surgery. Am J Med Sci 308, 184–185.[CrossRef]
    [Google Scholar]
  5. Conrads, G., Soffner, J., Pelz, K. & Mutters, R. ( 1997;). Taxonomic update and clinical significance of species within the genus Peptostreptococcus. Clin Infect Dis 25 (Suppl. 2), S94–S97.[CrossRef]
    [Google Scholar]
  6. Davies, U. M., Leak, A. M. & Dave, J. ( 1988;). Infection of a prosthetic knee joint with Peptostreptococcus magnus. Ann Rheumat Dis 47, 866–868.[CrossRef]
    [Google Scholar]
  7. Devereux, J., Haeberli, P. & Smithies, O. ( 1984;). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387–395.[CrossRef]
    [Google Scholar]
  8. Edmiston, C. E., Jr, Walker, A. P., Krepel, C. J. & Gohr, C. ( 1990;). The nonpuerperal breast infection: aerobic and anaerobic microbial recovery from acute and chronic disease. J Infect Dis 162, 695–699.[CrossRef]
    [Google Scholar]
  9. Ezaki, T., Li, N., Hashimoto, Y., Miura, H. & Yamamoto, H. ( 1994;). 16S ribosomal DNA sequences of anaerobic cocci and proposal of Ruminococcus hansenii comb. nov. and Ruminococcus productus comb. nov. Int J Syst Bacteriol 44, 130–136.[CrossRef]
    [Google Scholar]
  10. Ezaki, T., Kawamura, Y., Li, N., Li, Z.-Y., Zhao, L. & Shu, S. ( 2001;). Proposal of the genera Anaerococcus gen. nov., Peptoniphilus gen. nov. and Gallicola gen. nov. for members of the genus Peptostreptococcus. Int J Syst Evol Microbiol 51, 1521–1528.
    [Google Scholar]
  11. Fitzgerald, R. H., Jr, Rosenblatt, J. E., Tenney, J. H. & Bourgault, A. M. ( 1982;). Anaerobic septic arthritis. Clin Orthop 164, 141–148.
    [Google Scholar]
  12. Johnson, S., Lebahn, F., Peterson, L. R. & Gerding, D. N. ( 1995;). Use of an anaerobic collection and transport swab device to recover anaerobic bacteria from infected foot ulcers in diabetics. Clin Infect Dis 20 (Suppl. 2), S289–S290.
    [Google Scholar]
  13. Kamma, J. J., Diamanti-Kipioti, A., Nakou, M. & Mitsis, F. J. (2000). Profile of subgingival microbiota in children with primary dentition. J Periodontal Res 35, 33–41.
  14. Marler, L. M., Siders, J. A., Wolters, L. C., Pettigrew, Y., Skitt, B. L. & Allen, S. D. ( 1991;). Evaluation of the new RapID-ANA II system for the identification of clinical anaerobic isolates. J Clin Microbiol 29, 874–878.
    [Google Scholar]
  15. Moore, L. V. H., Moore, W. E. C., Cato, E. P., Smibert, R. M., Burmeister, J. A., Best, A. M. & Ranney, R. R. ( 1987;). Bacteriology of human gingivitis. J Dent Res 66, 989–995.[CrossRef]
    [Google Scholar]
  16. Murdoch, D. A. ( 1998;). Gram-positive anaerobic cocci. Clin Microbiol Rev 11, 81–120.
    [Google Scholar]
  17. Murdoch, D. A. & Mitchelmore, I. J. ( 1991;). The laboratory identification of gram-positive anaerobic cocci. J Med Microbiol 34, 295–308.[CrossRef]
    [Google Scholar]
  18. Murdoch, D. A. & Shah, H. N. ( 1999;). Reclassification of Peptostreptococcus magnus (Prevot 1933) Holdeman and Moore 1972 as Finegoldia magna comb. nov. and Peptostreptococcus micros (Prevot 1933) Smith 1957 as Micromonas micros comb. nov. Anaerobe 5, 555–559.[CrossRef]
    [Google Scholar]
  19. Murdoch, D. A., Mitchelmore, I. J. & Tabaqchali, S. ( 1994;). The clinical importance of gram-positive anaerobic cocci isolated at St Bartholomew's Hospital, London, in 1987. J Med Microbiol 41, 36–44.[CrossRef]
    [Google Scholar]
  20. Murdoch, D. A., Shah, H. N., Gharbia, S. E. & Rajendram, D. ( 2000;). Proposal to restrict the genus Peptostreptococcus (Kluyver & van Niel 1936) to Peptostreptococcus anaerobius. Anaerobe 6, 257–260.[CrossRef]
    [Google Scholar]
  21. Ng, J., Ng, L. K., Chow, A. W. & Dillon, J. A. R. ( 1994;). Identification of five Peptostreptococcus species isolated predominantly from the female genital tract by using the rapid ID32A system. J Clin Microbiol 32, 1302–1307.
    [Google Scholar]
  22. Panagou, P., Papandreou, L. & Bouros, D. ( 1991;). Severe anaerobic necrotizing pneumonia complicated by pyopneumothorax and anaerobic monoarthritis due to Peptostreptococcus magnus. Respiration 58, 223–225.[CrossRef]
    [Google Scholar]
  23. Rams, T. E., Feik, D., Listgarten, M. A. & Slots, J. ( 1992;). Peptostreptococcus micros in human periodontitis. Oral Microbiol Immunol 7, 1–6.[CrossRef]
    [Google Scholar]
  24. Riggio, M. P., Lennon, A. & Wray, D. ( 2000;). Detection of Helicobacter pylori DNA in recurrent aphthous stomatitis tissue by PCR. J Oral Pathol Med 29, 507–513.[CrossRef]
    [Google Scholar]
  25. Riggio, M. P., Lennon, A. & Smith, A. ( 2001;). Detection of Peptostreptococcus micros DNA in clinical samples by PCR. J Med Microbiol 50, 249–254.
    [Google Scholar]
  26. Sundqvist, G. ( 1992;). Associations between microbial species in dental root canal infections. Oral Microbiol Immunol 7, 257–262.[CrossRef]
    [Google Scholar]
  27. van Dalen, P. J., van Winkelhoff, A. J. & van Steenbergen, T. J. M. ( 1998;). Prevalence of Peptostreptococcus micros morphotypes in patients with adult periodontitis. Oral Microbiol Immunol 13, 62–64.[CrossRef]
    [Google Scholar]
  28. van der Vorm, E. R., Dondorp, A. M., van Ketel, R. J. & Dankert, J. (2000). Apparent culture-negative prosthetic valve endocarditis caused by Peptostreptococcus magnus. J Clin Microbiol 38, 4640–4642.
  29. Wade, W. G., Moran, J., Morgan, J. R., Newcombe, R. & Addy, M. ( 1992;). The effects of antimicrobial acrylic strips on the subgingival microflora in chronic periodontitis. J Clin Periodontol 19, 127–134.[CrossRef]
    [Google Scholar]
  30. Wilson, M. J., Hall, V., Brazier, J. & Lewis, M. A. O. ( 2000;). Evaluation of a phenotypic scheme for the identification of the ‘butyrate-producing’ Peptostreptococcus species. J Med Microbiol 49, 747–751.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05004-0
Loading
/content/journal/jmm/10.1099/jmm.0.05004-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error