1887

Abstract

Extended-spectrum β-lactamase (ESBL) production and quinolone resistance are often associated in enterobacteria. Prior exposure to 3G cephalosporins/quinolones accelerates the risk of resistance to both these groups of antibiotics. Hence, information on the antimicrobial resistance pattern of uropathogenic (UPEC) isolates is important to better formulate the guidelines for the empirical therapy of urinary tract infection in the context of HIV/AIDS. The aim of this study was to determine the incidence of ESBL/AmpC and fluoroquinolone (FQ) resistance among urinary isolates and to establish the association of extraintestinal virulence and phylogenetic distribution with antibiotic resistance and host immunocompromisation. Accordingly, 118 urinary isolates from HIV ( = 76) and non-HIV antenatal patients ( = 42) from Chennai, South India, were analysed for the presence of five virulence-associated genes (VAGs): and Compared with the susceptible HIV isolates, the majority of the ESBLAmpCFQ isolates harboured (66.7 %) and (40 %). The FQ-resistant HIV isolates were significantly enriched for (67.8 %) and (47.5 %) and qualified as UPEC (54.2 %), while a majority of the FQ-susceptible isolates from the non-HIV patients were found to harbour (48.4 %), (41.9 %) and (48.4 %) and were classified as UPEC (40.5 %). We conclude that antibiotic-resistant (ESBLAmpCand/or FQ) phylogroup D isolates with limited virulence are competent enough to establish infections in HIV patients, while among non-HIV patients, an array of virulence factors is essential for to overcome host defences irrespective of antibiotic resistance.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.050013-0
2013-03-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/3/345.html?itemId=/content/journal/jmm/10.1099/jmm.0.050013-0&mimeType=html&fmt=ahah

References

  1. Agrawal P., Ghosh A. N., Kumar S., Basu B., Kapila K.. ( 2008;). Prevalence of extended-spectrum β-lactamases among Escherichia coli and Klebsiella pneumoniae isolates in a tertiary care hospital. . Indian J Pathol Microbiol 51:, 139–142. [CrossRef][PubMed]
    [Google Scholar]
  2. Alfaresi M. S., Elkoush A. A.. ( 2010;). Real-time polymerase chain reaction for rapid detection of genes encoding SHV extended-spectrum β-lactamases. . Indian J Med Microbiol 28:, 332–336. [CrossRef][PubMed]
    [Google Scholar]
  3. Andersson D. I., Hughes D.. ( 2010;). Antibiotic resistance and its cost: is it possible to reverse resistance?. Nat Rev Microbiol 8:, 260–271.[PubMed]
    [Google Scholar]
  4. Baby Padmini S., Appala Raju B., Mani K. R.. ( 2008;). Detection of Enterobacteriaceae producing CTX-M extended spectrum β-lactamases from a tertiary care hospital in south India. . Indian J Med Microbiol 26:, 163–166. [CrossRef][PubMed]
    [Google Scholar]
  5. Babypadmini S., Appalaraju B.. ( 2004;). Extended spectrum β-lactamases in urinary isolates of Escherichia coli and Klebsiella pneumoniae – prevalence and susceptibility pattern in a tertiary care hospital. . Indian J Med Microbiol 22:, 172–174.[PubMed]
    [Google Scholar]
  6. Black J. A., Moland E. S., Thomson K. S.. ( 2005;). AmpC disk test for detection of plasmid-mediated AmpC beta-lactamases in Enterobacteriaceae lacking chromosomal AmpC beta-lactamases. . J Clin Microbiol 43:, 3110–3113. [CrossRef][PubMed]
    [Google Scholar]
  7. Bonnet R.. ( 2004;). Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. . Antimicrob Agents Chemother 48:, 1–14. [CrossRef][PubMed]
    [Google Scholar]
  8. Cantón R., Morosini M. I.. ( 2011;). Emergence and spread of antibiotic resistance following exposure to antibiotics. . FEMS Microbiol Rev 35:, 977–991. [CrossRef][PubMed]
    [Google Scholar]
  9. Chang F. Y., Siu L. K., Fung C. P., Huang M. H., Ho M.. ( 2001;). Diversity of SHV and TEM β-lactamases in Klebsiella pneumoniae: gene evolution in Northern Taiwan and two novel β-lactamases, SHV-25 and SHV-26. . Antimicrob Agents Chemother 45:, 2407–2413. [CrossRef][PubMed]
    [Google Scholar]
  10. Clermont O., Bonacorsi S., Bingen E.. ( 2000;). Rapid and simple determination of the Escherichia coli phylogenetic group. . Appl Environ Microbiol 66:, 4555–4558. [CrossRef][PubMed]
    [Google Scholar]
  11. Coudron P. E.. ( 2005;). Inhibitor-based methods for detection of plasmid-mediated AmpC β-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. . J Clin Microbiol 43:, 4163–4167. [CrossRef][PubMed]
    [Google Scholar]
  12. Falagas M. E., Karageorgopoulos D. E.. ( 2009;). Extended-spectrum β-lactamase-producing organisms. . J Hosp Infect 73:, 345–354. [CrossRef][PubMed]
    [Google Scholar]
  13. Frank T., Mbecko J. R., Misatou P., Monchy D.. ( 2011;). Emergence of quinolone resistance among extended-spectrum beta-lactamase-producing Enterobacteriaceae in the Central African Republic: genetic characterization. . BMC Res Notes 4:, 309–311. [CrossRef][PubMed]
    [Google Scholar]
  14. Grabe M., Bjerklund-Johansen T. E., Botto H., Çek M., Naber K. G., Tenke P., Wagenlehner F.. ( 2011;). Guidelines on urological infections. European Association of Urology.
  15. Hawkey P. M.. ( 2008;). Prevalence and clonality of extended-spectrum β-lactamases in Asia. . Clin Microbiol Infect 14: (Suppl. 1), 159–165. [CrossRef][PubMed]
    [Google Scholar]
  16. Hemalatha V., Padma M., Sekar U., Vinodh T. M., Arunkumar A. S.. ( 2007;). Detection of Amp C β lactamases production in Escherichia coli and Klebsiella by an inhibitor based method. . Indian J Med Res 126:, 220–223.[PubMed]
    [Google Scholar]
  17. Hoşoğlu S., Gündes S., Kolayli F., Karadenizli A., Demirdağ K., Günaydin M., Altindis M., Caylan R., Ucmak H.. ( 2007;). Extended spectrum β lactamases in ceftazidime resistant Escherichia coli and K. pneumoniae isolates in Turkish hospitals. . Indian J Med Microbiol 25:, 346–350. [CrossRef][PubMed]
    [Google Scholar]
  18. Jacoby G. A., Sutton L.. ( 1991;). Properties of plasmids responsible for production of extended-spectrum β-lactamases. . Antimicrob Agents Chemother 35:, 164–169. [CrossRef][PubMed]
    [Google Scholar]
  19. Jacoby G. A., Chow N., Waites K. B.. ( 2003;). Prevalence of plasmid-mediated quinolone resistance. . Antimicrob Agents Chemother 47:, 559–562. [CrossRef][PubMed]
    [Google Scholar]
  20. Johnson J. R., O’Bryan T. T.. ( 2004;). Detection of the Escherichia coli group 2 polysaccharide capsule synthesis gene kpsM by a rapid and specific PCR-based assay. . J Clin Microbiol 42:, 1773–1776. [CrossRef][PubMed]
    [Google Scholar]
  21. Johnson J. R., Stell A. L.. ( 2000;). Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. . J Infect Dis 181:, 261–272. [CrossRef][PubMed]
    [Google Scholar]
  22. Johnson J. R., Brown J. J., Carlino U. B., Russo T. A.. ( 1998;). Colonization with and acquisition of uropathogenic Escherichia coli as revealed by polymerase chain reaction-based detection. . J Infect Dis 177:, 1120–1124. [CrossRef][PubMed]
    [Google Scholar]
  23. Johnson J. R., Kuskowski M. A., Owens K., Gajewski A., Winokur P. L.. ( 2003;). Phylogenetic origin and virulence genotype in relation to resistance to fluoroquinolones and/or extended-spectrum cephalosporins and cephamycins among Escherichia coli isolates from animals and humans. . J Infect Dis 188:, 759–768. [CrossRef][PubMed]
    [Google Scholar]
  24. Khurana S., Taneja N., Sharma M.. ( 2002;). Extended spectrum beta-lactamase mediated resistance in urinary tract isolates of family Enterobacteriaceae. . Indian J Med Res 116:, 145–149.[PubMed]
    [Google Scholar]
  25. Kiratisin P., Apisarnthanarak A., Laesripa C., Saifon P.. ( 2008;). Molecular characterization and epidemiology of extended-spectrum-β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates causing health care-associated infection in Thailand, where the CTX-M family is endemic. . Antimicrob Agents Chemother 52:, 2818–2824. [CrossRef][PubMed]
    [Google Scholar]
  26. Kumar M. S., Lakshmi V., Rajagopalan R.. ( 2006;). Occurrence of extended spectrum β-lactamases among Enterobacteriaceae spp. isolated at a tertiary care institute. . Indian J Med Microbiol 24:, 208–211.[PubMed]
    [Google Scholar]
  27. Lampri N., Galani I., Poulakou G., Katsarolis I., Petrikkos G., Giamarellou H., Souli M.. ( 2012;). Mecillinam/clavulanate combination: a possible option for the treatment of community-acquired uncomplicated urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli. . J Antimicrob Chemother 67:, 2424–2428. [CrossRef][PubMed]
    [Google Scholar]
  28. Lavigne J. P., Marchandin H., Delmas J., Bouziges N., Lecaillon E., Cavalie L., Jean-Pierre H., Bonnet R., Sotto A.. ( 2006;). qnrA in CTX-M-producing Escherichia coli isolates from France. . Antimicrob Agents Chemother 50:, 4224–4228. [CrossRef][PubMed]
    [Google Scholar]
  29. Le Bouguenec C., Archambaud M., Labigne A.. ( 1992;). Rapid and specific detection of the pap, afa, and sfa adhesin-encoding operons in uropathogenic Escherichia coli strains by polymerase chain reaction. . J Clin Microbiol 30:, 1189–1193.[PubMed]
    [Google Scholar]
  30. Lebitasy M., Huang T. D., Rodriguez-Villalobos H., Simon A.. ( 2011;). Improving turnaround time for identifying extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae: experience with the BD Phoenix automated system. . J Med Microbiol 60:, 679–680. [CrossRef][PubMed]
    [Google Scholar]
  31. Lin C. F., Hsu S. K., Chen C. H., Huang J. R., Lo H. H.. ( 2010;). Genotypic detection and molecular epidemiology of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a regional hospital in central Taiwan. . J Med Microbiol 59:, 665–671. [CrossRef][PubMed]
    [Google Scholar]
  32. Livermore D. M., Canton R., Gniadkowski M., Nordmann P., Rossolini G. M., Arlet G., Ayala J., Coque T. M., Kern-Zdanowicz I.. & other authors ( 2007;). CTX-M: changing the face of ESBLs in Europe. . J Antimicrob Chemother 59:, 165–174. [CrossRef][PubMed]
    [Google Scholar]
  33. Lüthje P., Brauner A.. ( 2010;). Putative link between the virulence-associated fluA gene and fluoroquinolone resistance in uropathogenic Escherichia coli. . J Clin Microbiol 48:, 675–676. [CrossRef][PubMed]
    [Google Scholar]
  34. Mammeri H., Van De Loo M., Poirel L., Martinez-Martinez L., Nordmann P.. ( 2005;). Emergence of plasmid-mediated quinolone resistance in Escherichia coli in Europe. . Antimicrob Agents Chemother 49:, 71–76. [CrossRef][PubMed]
    [Google Scholar]
  35. Manchanda V., Singh N. P.. ( 2003;). Occurrence and detection of AmpC β-lactamases among Gram-negative clinical isolates using a modified three-dimensional test at Guru Tegh Bahadur Hospital, Delhi, India. . J Antimicrob Chemother 51:, 415–418. [CrossRef][PubMed]
    [Google Scholar]
  36. Mathai D., Rhomberg P. R., Biedenbach D. J., Jones R. N..India Antimicrobial Resistance Study Group ( 2002;). Evaluation of the in vitro activity of six broad-spectrum β-lactam antimicrobial agents tested against recent clinical isolates from India: a survey of ten medical center laboratories. . Diagn Microbiol Infect Dis 44:, 367–377. [CrossRef][PubMed]
    [Google Scholar]
  37. Meyer E., Schwab F., Schroeren-Boersch B., Gastmeier P.. ( 2010;). Dramatic increase of third-generation cephalosporin-resistant E. coli in German intensive care units: secular trends in antibiotic drug use and bacterial resistance, 2001 to 2008. . Crit Care 14:, R113. [CrossRef][PubMed]
    [Google Scholar]
  38. Munday C. J., Xiong J., Li C., Shen D., Hawkey P. M.. ( 2004;). Dissemination of CTX-M type β-lactamases in Enterobacteriaceae isolates in the People’s Republic of China. . Int J Antimicrob Agents 23:, 175–180. [CrossRef][PubMed]
    [Google Scholar]
  39. Muvunyi C. M., Masaisa F., Bayingana C., Mutesa L., Musemakweri A., Muhirwa G., Claeys G. W.. ( 2011;). Decreased susceptibility to commonly used antimicrobial agents in bacterial pathogens isolated from urinary tract infections in Rwanda: need for new antimicrobial guidelines. . Am J Trop Med Hyg 84:, 923–928. [CrossRef][PubMed]
    [Google Scholar]
  40. Nathisuwan S., Burgess D. S., Lewis J. S. II. ( 2001;). Extended-spectrum beta-lactamases: epidemiology, detection, and treatment. . Pharmacotherapy 21:, 920–928. [CrossRef][PubMed]
    [Google Scholar]
  41. Odeh R., Kelkar S., Hujer A. M., Bonomo R. A., Schreckenberger P. C., Quinn J. P.. ( 2002;). Broad resistance due to plasmid-mediated AmpC β-lactamases in clinical isolates of Escherichia coli. . Clin Infect Dis 35:, 140–145. [CrossRef][PubMed]
    [Google Scholar]
  42. Oktem I. M., Gulay Z., Bicmen M., Gur D..HITIT Project Study Group ( 2008;). qnrA prevalence in extended-spectrum beta-lactamase-positive Enterobacteriaceae isolates from Turkey. . Jpn J Infect Dis 61:, 13–17.[PubMed]
    [Google Scholar]
  43. Pagani L., Dell’Amico E., Migliavacca R., D’Andrea M. M., Giacobone E., Amicosante G., Romero E., Rossolini G. M.. ( 2003;). Multiple CTX-M-type extended-spectrum β-lactamases in nosocomial isolates of Enterobacteriaceae from a hospital in northern Italy. . J Clin Microbiol 41:, 4264–4269. [CrossRef][PubMed]
    [Google Scholar]
  44. Partridge S. R., Recchia G. D., Stokes H. W., Hall R. M.. ( 2001;). Family of class 1 integrons related to In4 from Tn1696. . Antimicrob Agents Chemother 45:, 3014–3020. [CrossRef][PubMed]
    [Google Scholar]
  45. Patel M. H., Trivedi G. R., Patel S. M., Vegad M. M.. ( 2010;). Antibiotic susceptibility pattern in urinary isolates of gram negative bacilli with special reference to AmpC β-lactamase in a tertiary care hospital. . Urol Ann 2:, 7–11. [CrossRef][PubMed]
    [Google Scholar]
  46. Paterson D. L., Bonomo R. A.. ( 2005;). Extended-spectrum β-lactamases: a clinical update. . Clin Microbiol Rev 18:, 657–686. [CrossRef][PubMed]
    [Google Scholar]
  47. Pérez-Pérez F. J., Hanson N. D.. ( 2002;). Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. . J Clin Microbiol 40:, 2153–2162. [CrossRef][PubMed]
    [Google Scholar]
  48. Pitout J. D. D., Laupland K. B.. ( 2008;). Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. . Lancet Infect Dis 8:, 159–166. [CrossRef][PubMed]
    [Google Scholar]
  49. Preston K. E., Graffunder E. M., Evans A. M., Venezia R. A.. ( 2003;). Survey of plasmid-associated genetic markers in Enterobacteriaceae with reduced susceptibilities to cephalosporins. . Antimicrob Agents Chemother 47:, 2179–2185. [CrossRef][PubMed]
    [Google Scholar]
  50. Priyadharsini R. I., Kavitha A., Rajan R., Mathavi S., Rajesh K. R.. ( 2011;). Prevalence of blaCTX M extended spectrum β lactamase gene in Enterobacteriaceae from critical care patients. . J Lab Physicians 3:, 80–83. [CrossRef][PubMed]
    [Google Scholar]
  51. Sharma J., Sharma M., Ray P.. ( 2010;). Detection of TEM and SHV genes in Escherichia coli and Klebsiella pneumoniae isolates in a tertiary care hospital from India. . Indian J Med Res 132:, 332–336.[PubMed]
    [Google Scholar]
  52. Shiju M. P., Yaashavanth R., Narendra N.. ( 2010;). Detection of extended spectrum β-lactamase production and multidrug resistance in clinical isolates of E. coli and K. pneumoniae in Mangalore. . J Clin Diagn Res 4:, 2442–2445.
    [Google Scholar]
  53. Singhal S., Mathur T., Khan S., Upadhyay D. J., Chugh S., Gaind R., Rattan A.. ( 2005;). Evaluation of methods for AmpC β-lactamase in gram negative clinical isolates from tertiary care hospitals. . Indian J Med Microbiol 23:, 120–124. [CrossRef][PubMed]
    [Google Scholar]
  54. Taneja N., Rao P., Arora J., Dogra A.. ( 2008;). Occurrence of ESBL and Amp-C β-lactamases and susceptibility to newer antimicrobial agents in complicated UTI. . Indian J Med Res 127:, 85–88.[PubMed]
    [Google Scholar]
  55. Tankhiwale S. S., Jalgaonkar S. V., Ahamad S., Hassani U.. ( 2004;). Evaluation of extended spectrum β-lactamase in urinary isolates. . Indian J Med Res 120:, 553–556.[PubMed]
    [Google Scholar]
  56. van der Starre W. E., van Nieuwkoop C., Paltansing S., van’t Wout J. W., Groeneveld G. H., Becker M. J., Koster T., Wattel-Louis G. H., Delfos N. M.. & other authors ( 2011;). Risk factors for fluoroquinolone-resistant Escherichia coli in adults with community-onset febrile urinary tract infection. . J Antimicrob Chemother 66:, 650–656. [CrossRef][PubMed]
    [Google Scholar]
  57. Villa L., Pezzella C., Tosini F., Visca P., Petrucca A., Carattoli A.. ( 2000;). Multiple-antibiotic resistance mediated by structurally related IncL/M plasmids carrying an extended-spectrum β-lactamase gene and a class 1 integron. . Antimicrob Agents Chemother 44:, 2911–2914. [CrossRef][PubMed]
    [Google Scholar]
  58. Wang M., Tran J. H., Jacoby G. A., Zhang Y., Wang F., Hooper D. C.. ( 2003;). Plasmid-mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China. . Antimicrob Agents Chemother 47:, 2242–2248. [CrossRef][PubMed]
    [Google Scholar]
  59. Winokur P. L., Canton R., Casellas J. M., Legakis N.. ( 2001;). Variations in the prevalence of strains expressing an extended-spectrum beta-lactamase phenotype and characterization of isolates from Europe, the Americas, and the Western Pacific region. . Clin Infect Dis 32: (Suppl. 2), S94–S103. [CrossRef][PubMed]
    [Google Scholar]
  60. Yagi T., Kurokawa H., Shibata N., Shibayama K., Arakawa Y.. ( 2000;). A preliminary survey of extended-spectrum β-lactamases (ESBLs) in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Japan. . FEMS Microbiol Lett 184:, 53–56.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.050013-0
Loading
/content/journal/jmm/10.1099/jmm.0.050013-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error