1887

Abstract

is a food-borne pathogen responsible for the disease listeriosis. The infectious process depends on survival in the high bile-salt conditions encountered throughout the gastrointestinal tract, including the gallbladder. However, it is not clear how bile-salt resistance mechanisms are induced, especially under physiologically relevant conditions. This study sought to determine how the strains EGDe (serovar 1/2a), F2365 (serovar 4a) and HCC23 (serovar 4b) respond to bile salts under anaerobic conditions. Changes in the expressed proteome were analysed using multidimensional protein identification technology coupled with electrospray ionization tandem mass spectrometry. In general, the response to bile salts among the strains tested involved significant alterations in the presence of cell-wall-associated proteins, DNA repair proteins, protein folding chaperones and oxidative stress-response proteins. Strain viability correlated with an initial osmotic stress response, yet continued survival for EGDe and F2365 involved different mechanisms. Specifically, proteins associated with biofilm formation in EGDe and transmembrane efflux pumps in F2365 were expressed, suggesting that variations exist in how virulent strains respond and adapt to high bile-salt environments. These results indicate that the bile-salt response varies among these serovars and that further research is needed to elucidate how the response to bile salts correlates with colonization potential .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.049742-0
2013-01-01
2022-05-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/1/25.html?itemId=/content/journal/jmm/10.1099/jmm.0.049742-0&mimeType=html&fmt=ahah

References

  1. Begley M., Gahan C. G., Hill C. 2002; Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance. Appl Environ Microbiol 68:6005–6012 [View Article][PubMed]
    [Google Scholar]
  2. Begley M., Sleator R. D., Gahan C. G., Hill C. 2005; Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes . Infect Immun 73:894–904 [View Article][PubMed]
    [Google Scholar]
  3. Begley M., Kerr C., Hill C. 2009; Exposure to bile influences biofilm formation by Listeria monocytogenes . Gut Pathog 1:11 [View Article][PubMed]
    [Google Scholar]
  4. Bernstein C., Bernstein H., Payne C. M., Beard S. E., Schneider J. 1999; Bile-salt activation of stress response promoters in Escherichia coli . Curr Microbiol 39:68–72 [View Article][PubMed]
    [Google Scholar]
  5. Beumer R. R., Te Giffel M. C., Cox L. J., Rombouts F. M., Abee T. 1994; Effect of exogenous proline, betaine, and carnitine on growth of Listeria monocytogenes in a minimal medium. Appl Environ Microbiol 60:1359–1363[PubMed]
    [Google Scholar]
  6. Cotter P. D., Gahan C. G., Hill C. 2001; A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Mol Microbiol 40:465–475 [View Article][PubMed]
    [Google Scholar]
  7. Craig R., Beavis R. C. 2004; tandem: matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467 [View Article][PubMed]
    [Google Scholar]
  8. Crawford N., Brooke B. N. 1955; The pH and buffering power of human bile. Lancet 268:1096–1097 [View Article][PubMed]
    [Google Scholar]
  9. Davis M. J., Coote P. J., O’Byrne C. P. 1996; Acid tolerance in Listeria monocytogenes: the adaptive acid tolerance response (ATR) and growth-phase-dependent acid resistance. Microbiology 142:2975–2982 [View Article][PubMed]
    [Google Scholar]
  10. Donaldson J. R., Nanduri B., Burgess S. C., Lawrence M. L. 2009; Comparative proteomic analysis of Listeria monocytogenes strains F2365 and EGD. Appl Environ Microbiol 75:366–373 [View Article][PubMed]
    [Google Scholar]
  11. Donaldson J. R., Nanduri B., Pittman J. R., Givaruangsawat S., Burgess S. C., Lawrence M. L. 2011; Proteomic expression profiles of virulent and avirulent strains of Listeria monocytogenes isolated from macrophages. J Proteomics 74:1906–1917 [View Article][PubMed]
    [Google Scholar]
  12. Dowd G. C., Joyce S. A., Hill C., Gahan C. G. 2011; Investigation of the mechanisms by which Listeria monocytogenes grows in porcine gallbladder bile. Infect Immun 79:369–379 [View Article][PubMed]
    [Google Scholar]
  13. Duché O., Trémoulet F., Glaser P., Labadie J. 2002; Salt stress proteins induced in Listeria monocytogenes . Appl Environ Microbiol 68:1491–1498 [View Article][PubMed]
    [Google Scholar]
  14. Dussurget O., Cabanes D., Dehoux P., Lecuit M., Buchrieser C., Glaser P., Cossart P. European Listeria Genome Consortium 2002; Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol 45:1095–1106 [View Article][PubMed]
    [Google Scholar]
  15. Fayol L., Beizig S., Le Monnier A., Lacroze V., Simeoni U. 2009; [Neonatal meningitis due to Listeria monocytogenes after 3 weeks of maternal treatment during pregnancy]. Arch Pediatr 16:353–356 (in French) [View Article][PubMed]
    [Google Scholar]
  16. Filzmoser P., Garrett R. G., Reimann C. 2005; Multivariate outlier detection in exploration geochemistry. Comput Geosci 31:579–587 [View Article]
    [Google Scholar]
  17. Gaillard J. L., Berche P., Frehel C., Gouin E., Cossart P. 1991; Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from Gram-positive cocci. Cell 65:1127–1141 [View Article][PubMed]
    [Google Scholar]
  18. Glaser P., Frangeul L., Buchrieser C., Rusniok C., Amend A., Baquero F., Berche P., Bloecker H., Brandt P. other authors 2001; Comparative genomics of Listeria species . Science 294:849–852[PubMed]
    [Google Scholar]
  19. Godreuil S., Galimand M., Gerbaud G., Jacquet C., Courvalin P. 2003; Efflux pump Lde is associated with fluoroquinolone resistance in Listeria monocytogenes . Antimicrob Agents Chemother 47:704–708 [View Article][PubMed]
    [Google Scholar]
  20. Hardy J., Francis K. P., DeBoer M., Chu P., Gibbs K., Contag C. H. 2004; Extracellular replication of Listeria monocytogenes in the murine gall bladder. Science 303:851–853 [View Article][PubMed]
    [Google Scholar]
  21. Hoopmann M. R., Finney G. L., MacCoss M. J. 2007; High-speed data reduction, feature detection, and MS/MS spectrum quality assessment of shotgun proteomics data sets using high-resolution mass spectrometry. Anal Chem 79:5620–5632 [View Article][PubMed]
    [Google Scholar]
  22. Jensen V. B., Harty J. T., Jones B. D. 1998; Interactions of the invasive pathogens Salmonella typhimurium, Listeria monocytogenes, and Shigella flexneri with M cells and murine Peyer’s patches. Infect Immun 66:3758–3766[PubMed]
    [Google Scholar]
  23. Kandell R. L., Bernstein C. 1991; Bile salt/acid induction of DNA damage in bacterial and mammalian cells: implications for colon cancer. Nutr Cancer 16:227–238 [View Article][PubMed]
    [Google Scholar]
  24. Kessner D., Chambers M., Burke R., Agus D., Mallick P. 2008; ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24:2534–2536 [View Article][PubMed]
    [Google Scholar]
  25. Kim H., Marquis H., Boor K. J. 2005; σB contributes to Listeria monocytogenes invasion by controlling expression of inlA and inlB . Microbiology 151:3215–3222 [View Article][PubMed]
    [Google Scholar]
  26. Kim S. H., Gorski L., Reynolds J., Orozco E., Fielding S., Park Y. H., Borucki M. K. 2006; Role of uvrA in the growth and survival of Listeria monocytogenes under UV radiation and acid and bile stress. J Food Prot 69:3031–3036[PubMed]
    [Google Scholar]
  27. Köhler S., Leimeister-Wächter M., Chakraborty T., Lottspeich F., Goebel W. 1990; The gene coding for protein p60 of Listeria monocytogenes and its use as a specific probe for Listeria monocytogenes . Infect Immun 58:1943–1950[PubMed]
    [Google Scholar]
  28. Kus J. V., Gebremedhin A., Dang V., Tran S. L., Serbanescu A., Foster D. B. 2011; Bile salts induce resistance to polymyxin in enterohemorrhagic Escherichia coli O157 : H7. J Bacteriol 193:4509–4515 [View Article][PubMed]
    [Google Scholar]
  29. Lin J., Sahin O., Michel L. O., Zhang Q. 2003; Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni . Infect Immun 71:4250–4259 [View Article][PubMed]
    [Google Scholar]
  30. Lynch M., Painter J., Woodruff R., Braden C. Centers for Disease Control and Prevention 2006; Surveillance for foodborne-disease outbreaks – United States, 1998 – 2002. MMWR Surveill Summ 55:1–42[PubMed]
    [Google Scholar]
  31. Machata S., Tchatalbachev S., Mohamed W., Jänsch L., Hain T., Chakraborty T. 2008; Lipoproteins of Listeria monocytogenes are critical for virulence and TLR2-mediated immune activation. J Immunol 181:2028–2035[PubMed] [CrossRef]
    [Google Scholar]
  32. McDonald W. H., Tabb D. L., Sadygov R. G., MacCoss M. J., Venable J., Graumann J., Johnson J. R., Cociorva D., Yates J. R. III 2004; MS1, MS2, and SQT – three unified, compact, and easily parsed file formats for the storage of shotgun proteomic spectra and identifications. Rapid Commun Mass Spectrom 18:2162–2168 [View Article][PubMed]
    [Google Scholar]
  33. McGann P., Wiedmann M., Boor K. J. 2007; The alternative sigma factor σB and the virulence gene regulator PrfA both regulate transcription of Listeria monocytogenes internalins. Appl Environ Microbiol 73:2919–2930 [View Article][PubMed]
    [Google Scholar]
  34. McGann P., Raengpradub S., Ivanek R., Wiedmann M., Boor K. J. 2008; Differential regulation of Listeria monocytogenes internalin and internalin-like genes by σB and PrfA as revealed by subgenomic microarray analyses. Foodborne Pathog Dis 5:417–435 [View Article][PubMed]
    [Google Scholar]
  35. Mead P. S., Slutsker L., Dietz V., McCaig L. F., Bresee J. S., Shapiro C., Griffin P. M., Tauxe R. V. 1999; Food-related illness and death in the United States. Emerg Infect Dis 5:607–625 [View Article][PubMed]
    [Google Scholar]
  36. Meilhac O., Zhou M., Santanam N., Parthasarathy S. 2000; Lipid peroxides induce expression of catalase in cultured vascular cells. J Lipid Res 41:1205–1213[PubMed]
    [Google Scholar]
  37. Mérino D., Réglier-Poupet H., Berche P., Charbit A. European Listeria Genome Consortium 2002; A hypermutator phenotype attenuates the virulence of Listeria monocytogenes in a mouse model. Mol Microbiol 44:877–887 [View Article][PubMed]
    [Google Scholar]
  38. Merritt M. E., Donaldson J. R. 2009; Effect of bile salts on the DNA and membrane integrity of enteric bacteria. J Med Microbiol 58:1533–1541 [View Article][PubMed]
    [Google Scholar]
  39. Merritt M. E., Lawrence A. M., Donaldson J. R. 2010; Comparative study of the effect of bile on the Listeria monocytogenes virulent strain EGD-e and avirulent strain HCC23. Arch Clin Micro 1:4–9
    [Google Scholar]
  40. Monk I. R., Cook G. M., Monk B. C., Bremer P. J. 2004; Morphotypic conversion in Listeria monocytogenes biofilm formation: biological significance of rough colony isolates. Appl Environ Microbiol 70:6686–6694 [View Article][PubMed]
    [Google Scholar]
  41. Nelson K. E., Fouts D. E., Mongodin E. F., Ravel J., DeBoy R. T., Kolonay J. F., Rasko D. A., Angiuoli S. V., Gill S. R. other authors 2004; Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res 32:2386–2395 [View Article][PubMed]
    [Google Scholar]
  42. O’Driscoll B., Gahan C. G., Hill C. 1996; Adaptive acid tolerance response in Listeria monocytogenes: isolation of an acid-tolerant mutant which demonstrates increased virulence. Appl Environ Microbiol 62:1693–1698[PubMed]
    [Google Scholar]
  43. Okada Y., Makino S., Tobe T., Okada N., Yamazaki S. 2002; Cloning of rel from Listeria monocytogenes as an osmotolerance involvement gene. Appl Environ Microbiol 68:1541–1547 [View Article][PubMed]
    [Google Scholar]
  44. Ozgenc A. I., Szekeres E. S., Lawrence C. W. 2005; In vivo evidence for a recA-independent recombination process in Escherichia coli that permits completion of replication of DNA containing UV damage in both strands. J Bacteriol 187:1974–1984 [View Article][PubMed]
    [Google Scholar]
  45. Prieto A. I., Ramos-Morales F., Casadesús J. 2006; Repair of DNA damage induced by bile salts in Salmonella enterica . Genetics 174:575–584 [View Article][PubMed]
    [Google Scholar]
  46. Rousseeuw P. J., Driessen K. V. 1999; A fast algorithm for the minimum covariance determinant estimator. Technometrics 41:212–223 [View Article]
    [Google Scholar]
  47. Schmittgen T. D., Livak K. J. 2008; Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108 [View Article][PubMed]
    [Google Scholar]
  48. Sleator R. D., Gahan C. G., Hill C. 2001; Identification and disruption of the proBA locus in Listeria monocytogenes: role of proline biosynthesis in salt tolerance and murine infection. Appl Environ Microbiol 67:2571–2577 [View Article][PubMed]
    [Google Scholar]
  49. Sleator R. D., Wemekamp-Kamphuis H. H., Gahan C. G., Abee T., Hill C. 2005; A PrfA-regulated bile exclusion system (BilE) is a novel virulence factor in Listeria monocytogenes . Mol Microbiol 55:1183–1195 [View Article][PubMed]
    [Google Scholar]
  50. Steele C. L., Donaldson J. R., Paul D., Banes M. M., Arick T., Bridges S. M., Lawrence M. L. 2011; Genome sequence of lineage III Listeria monocytogenes strain HCC23. J Bacteriol 193:3679–3680 [View Article][PubMed]
    [Google Scholar]
  51. Sue D., Boor K. J., Wiedmann M. 2003; σB-dependent expression patterns of compatible solute transporter genes opuCA and lmo1421 and the conjugated bile salt hydrolase gene bsh in Listeria monocytogenes . Microbiology 149:3247–3256 [View Article][PubMed]
    [Google Scholar]
  52. Thiagalingam S., Grossman L. 1991; Both ATPase sites of Escherichia coli UvrA have functional roles in nucleotide excision repair. J Biol Chem 266:11395–11403[PubMed]
    [Google Scholar]
  53. Thigpen M. C., Whitney C. G., Messonnier N. E., Zell E. R., Lynfield R., Hadler J. L., Harrison L. H., Farley M. M., Reingold A. other authors 2011; Bacterial meningitis in the United States, 1998–2007. N Engl J Med 364:2016–2025 [View Article][PubMed]
    [Google Scholar]
  54. van der Veen S., Abee T. 2011; Contribution of Listeria monocytogenes RecA to acid and bile survival and invasion of human intestinal Caco-2 cells. Int J Med Microbiol 301:334–340 [View Article][PubMed]
    [Google Scholar]
  55. Wang C., Zhang L. F., Austin F. W., Boyle C. R. 1998; Characterization of Listeria monocytogenes isolated from channel catfish (Ictalurus punctatus). Am J Vet Res 59:1125–1128[PubMed]
    [Google Scholar]
  56. Wang G., Yin S., An H., Chen S., Hao Y. 2011; Coexpression of bile salt hydrolase gene and catalase gene remarkably improves oxidative stress and bile salt resistance in Lactobacillus casei . J Ind Microbiol Biotechnol 38:985–990 [View Article][PubMed]
    [Google Scholar]
  57. Zhang Q., Feng Y., Deng L., Feng F., Wang L., Zhou Q., Luo Q. 2011; SigB plays a major role in Listeria monocytogenes tolerance to bile stress. Int J Food Microbiol 145:238–243 [View Article][PubMed]
    [Google Scholar]
  58. Zhou Q., Zhang Q., Qu H., Wang L., Feng F., Lao Q. 2012; Comparative proteomic analysis of Listeria monocytogenes tolerance to bile stress. Ann Microbiol (in press) [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.049742-0
Loading
/content/journal/jmm/10.1099/jmm.0.049742-0
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error