1887

Abstract

can invade epithelial cells, and the host-cell receptor αβ integrin is thought to mediate this process. The aim of this study was to investigate invasion of epithelial cell lines derived from oral (H357), skin (UP) and nasopharyngeal (Detroit 562) sites and to determine whether any differences were due to the levels of αβ integrin expressed. While the adhesion and invasion of two strains were similar in both oral and skin-derived keratinocytes, this was markedly reduced in the nasopharyngeal cell line, despite it expressing similar levels of αβ. While this might be explainable on the basis of availability of cell receptor, adhesion to and invasion of H357 and UP cells by were enhanced when the epithelial cells were in suspension rather than on a surface, and levels of α integrin subunit mRNA were also increased. Detroit 562 cells exhibited a similar α gene upregulation, but this did not result in enhanced adhesion and invasion of . The Detroit 562 cells also showed reduced adhesion to fibronectin compared with the other cell types. This, and the low invasion, may result from reduced αβ integrin activity or from variation in an as-yet-unidentified additional receptor or accessory molecule. These studies shed further light on the mechanisms of invasion of human cells.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.049650-0
2012-12-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/12/1654.html?itemId=/content/journal/jmm/10.1099/jmm.0.049650-0&mimeType=html&fmt=ahah

References

  1. Agerer F., Michel A., Ohlsen K., Hauck C. R.. ( 2003;). Integrin-mediated invasion of Staphylococcus aureus into human cells requires Src family protein-tyrosine kinases. . J Biol Chem 278:, 42524–42531. [CrossRef][PubMed]
    [Google Scholar]
  2. Agerer F., Lux S., Michel A., Rohde M., Ohlsen K., Hauck C. R.. ( 2005;). Cellular invasion by Staphylococcus aureus reveals a functional link between focal adhesion kinase and cortactin in integrin-mediated internalisation. . J Cell Sci 118:, 2189–2200. [CrossRef][PubMed]
    [Google Scholar]
  3. Akiyama S. K., Larjava H., Yamada K. M.. ( 1990;). Differences in the biosynthesis and localization of the fibronectin receptor in normal and transformed cultured human cells. . Cancer Res 50:, 1601–1607.[PubMed]
    [Google Scholar]
  4. Alexander E. H., Hudson M. C.. ( 2001;). Factors influencing the internalization of Staphylococcus aureus and impacts on the course of infections in humans. . Appl Microbiol Biotechnol 56:, 361–366. [CrossRef][PubMed]
    [Google Scholar]
  5. Bingham R. J., Rudiño-Piñera E., Meenan N. A., Schwarz-Linek U., Turkenburg J. P., Höök M., Garman E. F., Potts J. R.. ( 2008;). Crystal structures of fibronectin-binding sites from Staphylococcus aureus FnBPA in complex with fibronectin domains. . Proc Natl Acad Sci U S A 105:, 12254–12258. [CrossRef][PubMed]
    [Google Scholar]
  6. Brouillette E., Grondin G., Shkreta L., Lacasse P., Talbot B. G.. ( 2003;). In vivo and in vitro demonstration that Staphylococcus aureus is an intracellular pathogen in the presence or absence of fibronectin-binding proteins. . Microb Pathog 35:, 159–168. [CrossRef][PubMed]
    [Google Scholar]
  7. Byzova T. V., Goldman C. K., Pampori N., Thomas K. A., Bett A., Shattil S. J., Plow E. F.. ( 2000;). A mechanism for modulation of cellular responses to VEGF: activation of the integrins. . Mol Cell 6:, 851–860.[PubMed]
    [Google Scholar]
  8. Clement S., Vaudaux P., Francois P., Schrenzel J., Huggler E., Kampf S., Chaponnier C., Lew D., Lacroix J. S.. ( 2005;). Evidence of an intracellular reservoir in the nasal mucosa of patients with recurrent Staphylococcus aureus rhinosinusitis. . J Infect Dis 192:, 1023–1028. [CrossRef][PubMed]
    [Google Scholar]
  9. Cossart P., Sansonetti P. J.. ( 2004;). Bacterial invasion: the paradigms of enteroinvasive pathogens. . Science 304:, 242–248. [CrossRef][PubMed]
    [Google Scholar]
  10. Dogan S., Zhang Q., Pridmore A. C., Mitchell T. J., Finn A., Murdoch C.. ( 2011;). Pneumolysin-induced CXCL8 production by nasopharyngeal epithelial cells is dependent on calcium flux and MAPK activation via Toll-like receptor 4. . Microbes Infect 13:, 65–75. [CrossRef][PubMed]
    [Google Scholar]
  11. Dziewanowska K., Carson A. R., Patti J. M., Deobald C. F., Bayles K. W., Bohach G. A.. ( 2000;). Staphylococcal fibronectin binding protein interacts with heat shock protein 60 and integrins: role in internalization by epithelial cells. . Infect Immun 68:, 6321–6328. [CrossRef][PubMed]
    [Google Scholar]
  12. Finlay B. B., Cossart P.. ( 1997;). Exploitation of mammalian host cell functions by bacterial pathogens. . Science 276:, 718–725. [CrossRef][PubMed]
    [Google Scholar]
  13. Garzoni C., Kelley W. L.. ( 2009;). Staphylococcus aureus: new evidence for intracellular persistence. . Trends Microbiol 17:, 59–65. [CrossRef][PubMed]
    [Google Scholar]
  14. Greene C., McDevitt D., Francois P., Vaudaux P. E., Lew D. P., Foster T. J.. ( 1995;). Adhesion properties of mutants of Staphylococcus aureus defective in fibronectin-binding proteins and studies on the expression of fnb genes. . Mol Microbiol 17:, 1143–1152. [CrossRef][PubMed]
    [Google Scholar]
  15. Grundmeier M., Hussain M., Becker P., Heilmann C., Peters G., Sinha B.. ( 2004;). Truncation of fibronectin-binding proteins in Staphylococcus aureus strain Newman leads to deficient adherence and host cell invasion due to loss of the cell wall anchor function. . Infect Immun 72:, 7155–7163. [CrossRef][PubMed]
    [Google Scholar]
  16. Hauck C. R.. ( 2002;). Cell adhesion receptors – signaling capacity and exploitation by bacterial pathogens. . Med Microbiol Immunol (Berl) 191:, 55–62. [CrossRef][PubMed]
    [Google Scholar]
  17. Hirschhausen N., Schlesier T., Schmidt M. A., Götz F., Peters G., Heilmann C.. ( 2010;). A novel staphylococcal internalization mechanism involves the major autolysin Atl and heat shock cognate protein Hsc70 as host cell receptor. . Cell Microbiol 12:, 1746–1764. [CrossRef][PubMed]
    [Google Scholar]
  18. Hoffmann C., Berking A., Agerer F., Buntru A., Neske F., Chhatwal G. S., Ohlsen K., Hauck C. R.. ( 2010;). Caveolin limits membrane microdomain mobility and integrin-mediated uptake of fibronectin-binding pathogens. . J Cell Sci 123:, 4280–4291. [CrossRef][PubMed]
    [Google Scholar]
  19. Holmes S. D., May K., Johansson V., Markey F., Critchley I. A.. ( 1997;). Studies on the interaction of Staphylococcus aureus and Staphylococcus epidermidis with fibronectin using surface plasmon resonance (BIAcore). . J Microbiol Methods 28:, 77–84. [CrossRef]
    [Google Scholar]
  20. Huff S., Matsuka Y. V., McGavin M. J., Ingham K. C.. ( 1994;). Interaction of N-terminal fragments of fibronectin with synthetic and recombinant D motifs from its binding protein on Staphylococcus aureus studied using fluorescence anisotropy. . J Biol Chem 269:, 15563–15570.[PubMed]
    [Google Scholar]
  21. Hussain M., Haggar A., Peters G., Chhatwal G. S., Herrmann M., Flock J. I., Sinha B.. ( 2008;). More than one tandem repeat domain of the extracellular adherence protein of Staphylococcus aureus is required for aggregation, adherence, and host cell invasion but not for leukocyte activation. . Infect Immun 76:, 5615–5623. [CrossRef][PubMed]
    [Google Scholar]
  22. Kintarak S., Whawell S. A., Speight P. M., Packer S., Nair S. P.. ( 2004;). Internalization of Staphylococcus aureus by human keratinocytes. . Infect Immun 72:, 5668–5675. [CrossRef][PubMed]
    [Google Scholar]
  23. Massey R. C., Kantzanou M. N., Fowler T., Day N. P., Schofield K., Wann E. R., Berendt A. R., Höök M., Peacock S. J.. ( 2001;). Fibronectin-binding protein A of Staphylococcus aureus has multiple, substituting, binding regions that mediate adherence to fibronectin and invasion of endothelial cells. . Cell Microbiol 3:, 839–851. [CrossRef][PubMed]
    [Google Scholar]
  24. Mempel M., Schmidt T., Weidinger S., Schnopp C., Foster T., Ring J., Abeck D.. ( 1998;). Role of Staphylococcus aureus surface-associated proteins in the attachment to cultured HaCaT keratinocytes in a new adhesion assay. . J Invest Dermatol 111:, 452–456. [CrossRef][PubMed]
    [Google Scholar]
  25. Mongodin E., Bajolet O., Cutrona J., Bonnet N., Dupuit F., Puchelle E., de Bentzmann S.. ( 2002;). Fibronectin-binding proteins of Staphylococcus aureus are involved in adherence to human airway epithelium. . Infect Immun 70:, 620–630.[PubMed]
    [Google Scholar]
  26. Peacock S. J., Day N. P. J., Thomas M. G., Berendt A. R., Foster T. J.. ( 2000;). Clinical isolates of Staphylococcus aureus exhibit diversity in fnb genes and adhesion to human fibronectin. . J Infect 41:, 23–31. [CrossRef][PubMed]
    [Google Scholar]
  27. Pei X. F., Gorman P. A., Watt F. M.. ( 1991;). Two strains of human keratinocytes transfected with HPV16 DNA: comparison with the normal parental cells. . Carcinogenesis 12:, 277–284. [CrossRef][PubMed]
    [Google Scholar]
  28. Prime S. S., Nixon S. V., Crane I. J., Stone A., Matthews J. B., Maitland N. J., Remnant L., Powell S. K., Game S. M., Scully C.. ( 1990;). The behaviour of human oral squamous cell carcinoma in cell culture. . J Pathol 160:, 259–269. [CrossRef][PubMed]
    [Google Scholar]
  29. Saga S., Chen W. T., Yamada K. M.. ( 1988;). Enhanced fibronectin receptor expression in Rous sarcoma virus-induced tumors. . Cancer Res 48:, 5510–5513.[PubMed]
    [Google Scholar]
  30. Sinha B., Herrmann M.. ( 2005;). Mechanism and consequences of invasion of endothelial cells by Staphylococcus aureus. . Thromb Haemost 94:, 266–277.[PubMed]
    [Google Scholar]
  31. Sinha B., François P. P., Nüsse O., Foti M., Hartford O. M., Vaudaux P., Foster T. J., Lew D. P., Herrmann M., Krause K. H.. ( 1999;). Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin α5β1. . Cell Microbiol 1:, 101–117. [CrossRef][PubMed]
    [Google Scholar]
  32. Uitto V. J., Larjava H.. ( 1991;). Extracellular matrix molecules and their receptors: an overview with special emphasis on periodontal tissues. . Crit Rev Oral Biol Med 2:, 323–354.[PubMed]
    [Google Scholar]
  33. Virji M., Makepeace K., Moxon E. R.. ( 1994;). Distinct mechanisms of interactions of Opc-expressing meningococci at apical and basolateral surfaces of human endothelial cells; the role of integrins in apical interactions. . Mol Microbiol 14:, 173–184. [CrossRef][PubMed]
    [Google Scholar]
  34. Weiss W. J., Lenoy E., Murphy T., Tardio L., Burgio P., Projan S. J., Schneewind O., Alksne L.. ( 2004;). Effect of srtA and srtB gene expression on the virulence of Staphylococcus aureus in animal models of infection. . J Antimicrob Chemother 53:, 480–486. [CrossRef][PubMed]
    [Google Scholar]
  35. Wertheim H. F. L., Melles D. C., Vos M. C., van Leeuwen W., van Belkum A., Verbrugh H. A., Nouwen J. L.. ( 2005;). The role of nasal carriage in Staphylococcus aureus infections. . Lancet Infect Dis 5:, 751–762. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.049650-0
Loading
/content/journal/jmm/10.1099/jmm.0.049650-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error