1887

Abstract

Antimicrobial resistance is on the rise, and its early detection and surveillance are critical to implement effective control measures. The aim of this study was to develop a rapid hierarchical clustering bioinformatic tool for application on antibiotic susceptibility testing (AST) results (resistant, intermediate, sensitive) of a series of clinical isolates from Algeria and from France for surveillance of antibiotic-resistance phenotypes. A total of 1011 strains were collected from August 2008 to December 2012: 221 clinical isolates from western Algeria and 790 clinical isolates from Marseille, France. AST against a panel of 16 antibiotics was done for all isolates. Results of AST were introduced into MultiExperiment Viewer (MeV) software to perform hierarchical clustering, with resistant, intermediate and sensitive being translated to 1, 0 and −1 values, respectively. Hierarchical clustering results were compared to standard resistance phenotypes to evaluate the accuracy of the method. Based on the AST results, the 221 strains from Algeria could be separated into six phenotype groups as regards their resistance to β-lactam compounds: extended spectrum β-lactamase (ESBL) (68.3 %), ESBL associated with cephalosporinase (13.1 %), cephalosporinase (0.9 %), penicillinase (3.6 %) and wild-type (14.0 %). Hierarchical clustering by the MeV software applied to the AST results for all 1011 isolates generated clusters that were significantly representative of phenotypic classification and geographical origin, in less than 1 min. Moreover, adding to the dataset the AST results of a NDM-1 positive strain, the only strain resistant to imipenem in the series, immediately generated a new branch in the dendrogram. We have developed a rapid and simple hierarchical clustering tool for application on AST results that was able to survey qualitatively and quantitatively the prevalence of known and unknown phenotypes. This tool could be easily implemented in routine clinical microbiology laboratories.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.049437-0
2013-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/6/864.html?itemId=/content/journal/jmm/10.1099/jmm.0.049437-0&mimeType=html&fmt=ahah

References

  1. Adler A., Carmeli Y. 2011; Dissemination of the Klebsiella pneumoniae carbapenemase in the health care settings: tracking the trails of an elusive offender. MBio 2:e00280–11 [CrossRef]
    [Google Scholar]
  2. Boutiba-Ben Boubaker I., Ben Salah D., Besbes M., Mahjoubi F., Ghozzi R., Ben Redjeb S., Ben Hassen A., Hammami A. 2002; [Multidrug resistance in Klebsiella pneumoniae: multicenter study]. Tunis Med 80:26–28 (in French) [PubMed]
    [Google Scholar]
  3. Bradford P. A., Bratu S., Urban C., Visalli M., Mariano N., Landman D., Rahal J. J., Brooks S., Cebular S., Quale J. 2004; Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 beta-lactamases in New York City. Clin Infect Dis 39:55–60 [View Article][PubMed]
    [Google Scholar]
  4. Brisse S., Verhoef J. 2001; Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping. Int J Syst Evol Microbiol 51:915–924 [View Article][PubMed]
    [Google Scholar]
  5. Bush K., Courvalin P., Dantas G., Davies J., Eisenstein B., Huovinen P., Jacoby G. A., Kishony R., Kreiswirth B. N. other authors 2011; Tackling antibiotic resistance. Nat Rev Microbiol 9:894–896 [View Article][PubMed]
    [Google Scholar]
  6. Cornaglia G., Hryniewicz W., Jarlier V., Kahlmeter G., Mittermayer H., Stratchounski L., Baquero F. ESCMID Study Group for Antimicrobial Resistance Surveillance 2004; European recommendations for antimicrobial resistance surveillance. Clin Microbiol Infect 10:349–383 [View Article][PubMed]
    [Google Scholar]
  7. Cuzon G., Ouanich J., Gondret R., Naas T., Nordmann P. 2011; Outbreak of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in France. Antimicrob Agents Chemother 55:2420–2423 [View Article][PubMed]
    [Google Scholar]
  8. de Kraker M. E., Davey P. G., Grundmann H. BURDEN study group 2011; Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLoS Med 8:e1001104 [View Article][PubMed]
    [Google Scholar]
  9. de Melo M. E., Cabral A. B., Maciel M. A., da Silveira V. M., de Souza Lopes A. C. 2011; Phylogenetic groups among Klebsiella pneumoniae isolates from Brazil: relationship with antimicrobial resistance and origin. Curr Microbiol 62:1596–1601 [View Article][PubMed]
    [Google Scholar]
  10. Diene S. M., Bruder N., Raoult D., Rolain J. M. 2011; Real-time PCR assay allows detection of the New Delhi metallo-β-lactamase (NDM-1)-encoding gene in France. Int J Antimicrob Agents 37:544–546 [View Article][PubMed]
    [Google Scholar]
  11. Ducki S., Blech M. F. 2004; [Surveillance of multi-resistant bacteria in Lorraine: a three-year multicentre incidence study]. Med Mal Infect 34:70–75 (in French) [View Article][PubMed]
    [Google Scholar]
  12. EARS-Net 2010 Antimicrobial Resistance Surveillance in Europe Stockholm: European Centre for Disease Prevention and Control;
    [Google Scholar]
  13. Edelstein M., Pimkin M., Palagin I., Edelstein I., Stratchounski L. 2003; Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob Agents Chemother 47:3724–3732 [View Article][PubMed]
    [Google Scholar]
  14. Eisen M. B., Spellman P. T., Brown P. O., Botstein D. 1998; Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95:14863–14868 [View Article][PubMed]
    [Google Scholar]
  15. Giakkoupi P., Papagiannitsis C. C., Miriagou V., Pappa O., Polemis M., Tryfinopoulou K., Tzouvelekis L. S., Vatopoulos A. C. 2011; An update of the evolving epidemic of bla KPC-2-carrying Klebsiella pneumoniae in Greece (2009–10). J Antimicrob Chemother 66:1510–1513 [View Article][PubMed]
    [Google Scholar]
  16. Giraud-Morin C., Fosse T. 2008; [Recent evolution and characterization of extended-spectrum beta-lactamase producing enterobacteria in the CHU of Nice (2005–2007)]. Pathol Biol (Paris) 56:417–423 (in French) [View Article][PubMed]
    [Google Scholar]
  17. Giske C. G., Cornaglia G. ESCMID Study Group on Antimicrobial Resistance Surveillance (ESGARS) 2010; Supranational surveillance of antimicrobial resistance: The legacy of the last decade and proposals for the future. Drug Resist Updat 13:93–98 [View Article][PubMed]
    [Google Scholar]
  18. Gupta A., Ampofo K., Rubenstein D., Saiman L. 2003; Extended spectrum beta lactamase-producing Klebsiella pneumoniae infections: a review of the literature. J Perinatol 23:439–443 [View Article][PubMed]
    [Google Scholar]
  19. Hashimoto S., Murakami Y., Taniguchi K., Nagai M. 2000; Detection of epidemics in their early stage through infectious disease surveillance. Int J Epidemiol 29:905–910 [View Article][PubMed]
    [Google Scholar]
  20. Howe E., Holton K., Nair S., Schlauch D., Sinha R., Quackenbush J. 2010; MeV: MultiExperiment Viewer. In Biomedical Informatics for Cancer Research pp. 267–277 Edited by Ochs M. F., Casagrande J. T., Davuluri R. V. New York: Springer;
    [Google Scholar]
  21. Jarlier V., Nicolas M. H., Fournier G., Philippon A. 1988; Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis 10:867–878 [View Article][PubMed]
    [Google Scholar]
  22. Joyanes P., del Carmen Conejo M., Martínez-Martínez L., Perea E. J. 2001; Evaluation of the VITEK 2 system for the identification and susceptibility testing of three species of nonfermenting gram-negative rods frequently isolated from clinical samples. J Clin Microbiol 39:3247–3253 [View Article][PubMed]
    [Google Scholar]
  23. Kempf M., Rolain J. M., Azza S., Diene S., Joly-Guillou M. L., Dubourg G., Colson P., Papazian L., Richet H. other authors 2013; Investigation of Acinetobacter baumannii resistance to carbapenems in Marseille hospitals, south of France: a transition from an epidemic to an endemic situation. APMIS 121:64–71 [View Article][PubMed]
    [Google Scholar]
  24. Khan E., Ejaz M., Zafar A., Jabeen K., Shakoor S., Inayat R., Hasan R. 2010; Increased isolation of ESBL producing Klebsiella pneumoniae with emergence of carbapenem resistant isolates in Pakistan: report from a tertiary care hospital. J Pak Med Assoc 60:186–190[PubMed]
    [Google Scholar]
  25. Kim J. Y., Sohn J. W., Park D. W., Yoon Y. K., Kim Y. M., Kim M. J. 2008; Control of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae using a computer-assisted management program to restrict third-generation cephalosporin use. J Antimicrob Chemother 62:416–421 [View Article][PubMed]
    [Google Scholar]
  26. Kruger T., Szabo D., Keddy K. H., Deeley K., Marsh J. W., Hujer A. M., Bonomo R. A., Paterson D. L. 2004; Infections with nontyphoidal Salmonella species producing TEM-63 or a novel TEM enzyme, TEM-131, in South Africa. Antimicrob Agents Chemother 48:4263–4270 [View Article][PubMed]
    [Google Scholar]
  27. Messai Y., Iabadene H., Benhassine T., Alouache S., Tazir M., Gautier V., Arlet G., Bakour R. 2008; Prevalence and characterization of extended-spectrum beta-lactamases in Klebsiella pneumoniae in Algiers hospitals (Algeria). Pathol Biol (Paris) 56:319–325 [View Article][PubMed]
    [Google Scholar]
  28. Monnet D. L. 2000; Toward multinational antimicrobial resistance surveillance systems in Europe. Int J Antimicrob Agents 15:91–101 [View Article][PubMed]
    [Google Scholar]
  29. Nordmann P., Carrer A. 2010; [Carbapenemases in Enterobacteriaceae]. Arch Pediatr 17:Suppl. 4S154–S162 [View Article][PubMed]
    [Google Scholar]
  30. Nordmann P., Cuzon G., Naas T. 2009; The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9:228–236 [View Article][PubMed]
    [Google Scholar]
  31. PAHO 2000; An integrated approach to communicable disease surveillance. Epidemiol Bull 21:1–4[PubMed]
    [Google Scholar]
  32. Parola P., Colson P., Dubourg G., Million M., Charrel R., Minodier P., Raoult D. 2011; Group A streptococcal infections during the seasonal influenza outbreak 2010/11 in South East England. Euro Surveill 16:16[PubMed]
    [Google Scholar]
  33. Pasteur Institute of Algeria (2004 Surveillance de la résistance des bactéries aux antibiotiques. Algiers: ANDS Projet de l’Organisation Mondiale de la Santé
  34. Pasteur Institute of Algeria (2008 Surveillance de la résistance des bactéries aux antibiotiques. Algiers: ANDS Projet de l’Organisation Mondiale de la Santé
  35. Pasteur Institute of Algeria (2009 Surveillance de la résistance des bactéries aux antibiotiques. Algiers: ANDS Projet de l’Organisation Mondiale de la Santé
  36. Podschun R., Ullmann U. 1998; Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11:589–603[PubMed]
    [Google Scholar]
  37. Rolain J. M., Parola P., Cornaglia G. 2010; New Delhi metallo-beta-lactamase (NDM-1): towards a new pandemia?. Clin Microbiol Infect 16:1699–1701 [View Article][PubMed]
    [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [View Article][PubMed]
    [Google Scholar]
  39. Sekhri-Arafa N., Smati F., Scheftel J. M., Meunier O. 2010 Marqueurs épidémiologiques de souches de Klebsiella pneumoniae subsp. pneumoniae isolées au CHU de Constantine. Rev Microbiol Ind San Environ 482–98
    [Google Scholar]
  40. Seng P., Drancourt M., Gouriet F., La Scola B., Fournier P. E., Rolain J. M., Raoult D. 2009; Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551 [View Article][PubMed]
    [Google Scholar]
  41. Turner P. J. 2005; Extended-spectrum beta-lactamases. Clin Infect Dis 41:Suppl. 4S273–S275 [View Article][PubMed]
    [Google Scholar]
  42. Walsh T. R., Weeks J., Livermore D. M., Toleman M. A. 2011; Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 11:355–362 [View Article][PubMed]
    [Google Scholar]
  43. WHO 2011; Strengthen surveillance and laboratory capacity.
  44. Yagi T., Kurokawa H., Shibata N., Shibayama K., Arakawa Y. 2000; A preliminary survey of extended-spectrum beta-lactamases (ESBLs) in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Japan. FEMS Microbiol Lett 184:53–56[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.049437-0
Loading
/content/journal/jmm/10.1099/jmm.0.049437-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error